Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4HEPionPlusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
29// G4 Process: Gheisha High Energy Collision model.
30// This includes the high energy cascading model, the two-body-resonance model
31// and the low energy two-body model. Not included are the low energy stuff
32// like nuclear reactions, nuclear fission without any cascading and all
33// processes for particles at rest.
34// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
35// H. Fesefeldt, RWTH-Aachen, 23-October-1996
36
38#include "globals.hh"
39#include "G4ios.hh"
41
42void G4HEPionPlusInelastic::ModelDescription(std::ostream& outFile) const
43{
44 outFile << "G4HEPionPlusInelastic is one of the High Energy\n"
45 << "Parameterized (HEP) models used to implement inelastic\n"
46 << "pi+ scattering from nuclei. It is a re-engineered\n"
47 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
48 << "initial collision products into backward- and forward-going\n"
49 << "clusters which are then decayed into final state hadrons.\n"
50 << "The model does not conserve energy on an event-by-event\n"
51 << "basis. It may be applied to pi+ with initial energies\n"
52 << "above 20 GeV.\n";
53}
54
55
58 G4Nucleus& targetNucleus)
59{
60 G4HEVector* pv = new G4HEVector[MAXPART];
61 const G4HadProjectile* aParticle = &aTrack;
62 const G4double A = targetNucleus.GetA_asInt();
63 const G4double Z = targetNucleus.GetZ_asInt();
64 G4HEVector incidentParticle(aParticle);
65
66 G4double atomicNumber = Z;
67 G4double atomicWeight = A;
68
69 G4int incidentCode = incidentParticle.getCode();
70 G4double incidentMass = incidentParticle.getMass();
71 G4double incidentTotalEnergy = incidentParticle.getEnergy();
72
73 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
74 // DHW 19 May 2011: variable set but not used
75
76 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
77
78 if (incidentKineticEnergy < 1.)
79 G4cout << "G4HEPionPlusInelastic: incident energy < 1 GeV" << G4endl;
80
81 if (verboseLevel > 1) {
82 G4cout << "G4HEPionPlusInelastic::ApplyYourself" << G4endl;
83 G4cout << "incident particle " << incidentParticle.getName()
84 << "mass " << incidentMass
85 << "kinetic energy " << incidentKineticEnergy
86 << G4endl;
87 G4cout << "target material with (A,Z) = ("
88 << atomicWeight << "," << atomicNumber << ")" << G4endl;
89 }
90
91 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
92 atomicWeight, atomicNumber);
93 if (verboseLevel > 1)
94 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
95
96 incidentKineticEnergy -= inelasticity;
97
98 G4double excitationEnergyGNP = 0.;
99 G4double excitationEnergyDTA = 0.;
100
101 G4double excitation = NuclearExcitation(incidentKineticEnergy,
102 atomicWeight, atomicNumber,
103 excitationEnergyGNP,
104 excitationEnergyDTA);
105 if (verboseLevel > 1)
106 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
107 << excitationEnergyDTA << G4endl;
108
109 incidentKineticEnergy -= excitation;
110 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
111 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
112 // *(incidentTotalEnergy+incidentMass));
113 // DHW 19 May 2011: variable set but not used
114
115 G4HEVector targetParticle;
116 if (G4UniformRand() < atomicNumber/atomicWeight) {
117 targetParticle.setDefinition("Proton");
118 } else {
119 targetParticle.setDefinition("Neutron");
120 }
121
122 G4double targetMass = targetParticle.getMass();
123 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
124 + targetMass*targetMass
125 + 2.0*targetMass*incidentTotalEnergy);
126 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
127
128 G4bool inElastic = true;
129
130 vecLength = 0;
131
132 if (verboseLevel > 1)
133 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
134 << incidentCode << G4endl;
135
136 G4bool successful = false;
137
138 FirstIntInCasPionPlus(inElastic, availableEnergy, pv, vecLength,
139 incidentParticle, targetParticle, atomicWeight);
140
141 if (verboseLevel > 1)
142 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
143
144 if ((vecLength > 0) && (availableEnergy > 1.))
145 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
146 pv, vecLength,
147 incidentParticle, targetParticle);
148
149 HighEnergyCascading(successful, pv, vecLength,
150 excitationEnergyGNP, excitationEnergyDTA,
151 incidentParticle, targetParticle,
152 atomicWeight, atomicNumber);
153 if (!successful)
155 excitationEnergyGNP, excitationEnergyDTA,
156 incidentParticle, targetParticle,
157 atomicWeight, atomicNumber);
158 if (!successful)
159 MediumEnergyCascading(successful, pv, vecLength,
160 excitationEnergyGNP, excitationEnergyDTA,
161 incidentParticle, targetParticle,
162 atomicWeight, atomicNumber);
163
164 if (!successful)
166 excitationEnergyGNP, excitationEnergyDTA,
167 incidentParticle, targetParticle,
168 atomicWeight, atomicNumber);
169 if (!successful)
170 QuasiElasticScattering(successful, pv, vecLength,
171 excitationEnergyGNP, excitationEnergyDTA,
172 incidentParticle, targetParticle,
173 atomicWeight, atomicNumber);
174 if (!successful)
175 ElasticScattering(successful, pv, vecLength,
176 incidentParticle,
177 atomicWeight, atomicNumber);
178
179 if (!successful)
180 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
181 << G4endl;
182
184 delete [] pv;
186 return &theParticleChange;
187}
188
189
190void
192 const G4double availableEnergy,
193 G4HEVector pv[],
194 G4int& vecLen,
195 const G4HEVector& incidentParticle,
196 const G4HEVector& targetParticle,
197 const G4double atomicWeight)
198
199// Pion+ undergoes interaction with nucleon within a nucleus. Check if it is
200// energetically possible to produce pions/kaons. In not, assume nuclear excitation
201// occurs and input particle is degraded in energy. No other particles are produced.
202// If reaction is possible, find the correct number of pions/protons/neutrons
203// produced using an interpolation to multiplicity data. Replace some pions or
204// protons/neutrons by kaons or strange baryons according to the average
205// multiplicity per inelastic reaction.
206{
207 static const G4double expxu = 82.; // upper bound for arg. of exp
208 static const G4double expxl = -expxu; // lower bound for arg. of exp
209
210 static const G4double protb = 0.7;
211 static const G4double neutb = 0.7;
212 static const G4double c = 1.25;
213
214 static const G4int numMul = 1200;
215 static const G4int numSec = 60;
216
218 G4int protonCode = Proton.getCode();
219 G4double pionMass = PionPlus.getMass();
220
221 G4int targetCode = targetParticle.getCode();
222 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
223
224 static G4bool first = true;
225 static G4double protmul[numMul], protnorm[numSec]; // proton constants
226 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
227
228 // misc. local variables
229 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
230
231 G4int i, counter, nt, npos, nneg, nzero;
232
233 if( first )
234 { // compute normalization constants, this will only be done once
235 first = false;
236 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
237 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
238 counter = -1;
239 for( npos=0; npos<(numSec/3); npos++ )
240 {
241 for( nneg=Imax(0,npos-2); nneg<=npos; nneg++ )
242 {
243 for( nzero=0; nzero<numSec/3; nzero++ )
244 {
245 if( ++counter < numMul )
246 {
247 nt = npos+nneg+nzero;
248 if( (nt>0) && (nt<=numSec) )
249 {
250 protmul[counter] =
251 pmltpc(npos,nneg,nzero,nt,protb,c) ;
252 protnorm[nt-1] += protmul[counter];
253 }
254 }
255 }
256 }
257 }
258 for( i=0; i<numMul; i++ )neutmul[i] = 0.0;
259 for( i=0; i<numSec; i++ )neutnorm[i] = 0.0;
260 counter = -1;
261 for( npos=0; npos<numSec/3; npos++ )
262 {
263 for( nneg=Imax(0,npos-1); nneg<=(npos+1); nneg++ )
264 {
265 for( nzero=0; nzero<numSec/3; nzero++ )
266 {
267 if( ++counter < numMul )
268 {
269 nt = npos+nneg+nzero;
270 if( (nt>0) && (nt<=numSec) )
271 {
272 neutmul[counter] =
273 pmltpc(npos,nneg,nzero,nt,neutb,c);
274 neutnorm[nt-1] += neutmul[counter];
275 }
276 }
277 }
278 }
279 }
280 for( i=0; i<numSec; i++ )
281 {
282 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
283 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
284 }
285 } // end of initialization
286
287
288 // initialize the first two places
289 // the same as beam and target
290 pv[0] = incidentParticle;
291 pv[1] = targetParticle;
292 vecLen = 2;
293
294 if( !inElastic )
295 { // quasi-elastic scattering, no pions produced
296 if( targetCode == neutronCode )
297 {
298 G4double cech[] = {0.33,0.27,0.29,0.31,0.27,0.18,0.13,0.10,0.09,0.07};
299 G4int iplab = G4int( Amin( 9.0, incidentTotalMomentum*5. ) );
300 if( G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) )
301 { // charge exchange pi+ n -> pi0 p
302 pv[0] = PionZero;
303 pv[1] = Proton;
304 }
305 }
306 return;
307 }
308 else if (availableEnergy <= pionMass)
309 return;
310
311// inelastic scattering
312
313 npos = 0, nneg = 0, nzero = 0;
314 G4double eab = availableEnergy;
315 G4int ieab = G4int( eab*5.0 );
316
317 G4double supp[] = {0., 0.2, 0.45, 0.55, 0.65, 0.75, 0.85, 0.90, 0.94, 0.98};
318 if( (ieab <= 9) && (G4UniformRand() >= supp[ieab]) )
319 {
320// suppress high multiplicity events at low momentum
321// only one additional pion will be produced
322 G4double w0, wp, wm, wt, ran;
323 if( targetCode == protonCode ) // target is a proton
324 {
325 w0 = - sqr(1.+protb)/(2.*c*c);
326 wp = w0 = std::exp(w0);
327 if( G4UniformRand() < w0/(w0+wp) )
328 { npos = 0; nneg = 0; nzero = 1; }
329 else
330 { npos = 1; nneg = 0; nzero = 0; }
331 }
332 else
333 { // target is a neutron
334 w0 = -sqr(1.+neutb)/(2.*c*c);
335 wp = w0 = std::exp(w0);
336 wm = -sqr(-1.+neutb)/(2.*c*c);
337 wm = std::exp(wm);
338 wt = w0+wp+wm;
339 wp = w0+wp;
340 ran = G4UniformRand();
341 if( ran < w0/wt)
342 { npos = 0; nneg = 0; nzero = 1; }
343 else if( ran < wp/wt)
344 { npos = 1; nneg = 0; nzero = 0; }
345 else
346 { npos = 0; nneg = 1; nzero = 0; }
347 }
348 }
349 else
350 {
351 // number of total particles vs. centre of mass Energy - 2*proton mass
352
353 G4double aleab = std::log(availableEnergy);
354 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
355 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
356
357 // normalization constant for kno-distribution.
358 // calculate first the sum of all constants, check for numerical problems.
359 G4double test, dum, anpn = 0.0;
360
361 for (nt=1; nt<=numSec; nt++) {
362 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
363 dum = pi*nt/(2.0*n*n);
364 if (std::fabs(dum) < 1.0) {
365 if( test >= 1.0e-10 )anpn += dum*test;
366 } else {
367 anpn += dum*test;
368 }
369 }
370
371 G4double ran = G4UniformRand();
372 G4double excs = 0.0;
373 if( targetCode == protonCode )
374 {
375 counter = -1;
376 for (npos=0; npos<numSec/3; npos++) {
377 for (nneg=Imax(0,npos-2); nneg<=npos; nneg++) {
378 for (nzero=0; nzero<numSec/3; nzero++) {
379 if (++counter < numMul) {
380 nt = npos+nneg+nzero;
381 if ( (nt>0) && (nt<=numSec) ) {
382 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
383 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
384 if (std::fabs(dum) < 1.0) {
385 if( test >= 1.0e-10 )excs += dum*test;
386 } else {
387 excs += dum*test;
388 }
389 if (ran < excs) goto outOfLoop; //------------------>
390 }
391 }
392 }
393 }
394 }
395
396 // 3 previous loops continued to the end
397 inElastic = false; // quasi-elastic scattering
398 return;
399 }
400 else
401 { // target must be a neutron
402 counter = -1;
403 for (npos=0; npos<numSec/3; npos++) {
404 for (nneg=Imax(0,npos-1); nneg<=(npos+1); nneg++) {
405 for (nzero=0; nzero<numSec/3; nzero++) {
406 if (++counter < numMul) {
407 nt = npos+nneg+nzero;
408 if ( (nt>=1) && (nt<=numSec) ) {
409 test = std::exp( Amin( expxu, Amax( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
410 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
411 if (std::fabs(dum) < 1.0) {
412 if( test >= 1.0e-10 )excs += dum*test;
413 } else {
414 excs += dum*test;
415 }
416 if (ran < excs) goto outOfLoop; // --------------------->
417 }
418 }
419 }
420 }
421 }
422 // 3 previous loops continued to the end
423 inElastic = false; // quasi-elastic scattering.
424 return;
425 }
426 }
427 outOfLoop: // <--------------------------------------------
428
429 if( targetCode == protonCode)
430 {
431 if( npos == nneg)
432 {
433 }
434 else if (npos == (1+nneg))
435 {
436 if( G4UniformRand() < 0.5)
437 {
438 pv[1] = Neutron;
439 }
440 else
441 {
442 pv[0] = PionZero;
443 }
444 }
445 else
446 {
447 pv[0] = PionZero;
448 pv[1] = Neutron;
449 }
450 }
451 else
452 {
453 if( npos == nneg)
454 {
455 if( G4UniformRand() < 0.25)
456 {
457 pv[0] = PionZero;
458 pv[1] = Proton;
459 }
460 else
461 {
462 }
463 }
464 else if ( npos == (1+nneg))
465 {
466 pv[0] = PionZero;
467 }
468 else
469 {
470 pv[1] = Proton;
471 }
472 }
473
474
475 nt = npos + nneg + nzero;
476 while ( nt > 0)
477 {
478 G4double ran = G4UniformRand();
479 if ( ran < (G4double)npos/nt)
480 {
481 if( npos > 0 )
482 { pv[vecLen++] = PionPlus;
483 npos--;
484 }
485 }
486 else if ( ran < (G4double)(npos+nneg)/nt)
487 {
488 if( nneg > 0 )
489 {
490 pv[vecLen++] = PionMinus;
491 nneg--;
492 }
493 }
494 else
495 {
496 if( nzero > 0 )
497 {
498 pv[vecLen++] = PionZero;
499 nzero--;
500 }
501 }
502 nt = npos + nneg + nzero;
503 }
504 if (verboseLevel > 1)
505 {
506 G4cout << "Particles produced: " ;
507 G4cout << pv[0].getName() << " " ;
508 G4cout << pv[1].getName() << " " ;
509 for (i=2; i < vecLen; i++)
510 {
511 G4cout << pv[i].getName() << " " ;
512 }
513 G4cout << G4endl;
514 }
515 return;
516 }
517
518
519
520
521
522
523
524
525
@ stopAndKill
@ neutronCode
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4HEVector PionPlus
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
G4double Amin(G4double a, G4double b)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
G4double Amax(G4double a, G4double b)
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4int Imax(G4int a, G4int b)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
virtual void ModelDescription(std::ostream &) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void FirstIntInCasPionPlus(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
T sqr(const T &x)
Definition: templates.hh:145