Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4PreCompoundFragment.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// J. M. Quesada (August 2008).
29// Based on previous work by V. Lara
30//
31// Modified:
32// 06.09.2008 JMQ Also external choice has been added for:
33// - superimposed Coulomb barrier (if useSICB=true)
34// 20.08.2010 V.Ivanchenko cleanup
35//
36
38
39G4PreCompoundFragment::
40G4PreCompoundFragment(const G4ParticleDefinition* part,
41 G4VCoulombBarrier* aCoulombBarrier)
42 : G4VPreCompoundFragment(part,aCoulombBarrier)
43{}
44
46{}
47
49CalcEmissionProbability(const G4Fragment & aFragment)
50{
51 //G4cout << theCoulombBarrier << " " << GetMaximalKineticEnergy() << G4endl;
52 // If theCoulombBarrier effect is included in the emission probabilities
53 //if (GetMaximalKineticEnergy() <= 0.0)
54 G4double limit = 0.0;
55 if(OPTxs==0 || useSICB) { limit = theCoulombBarrier; }
56 if (GetMaximalKineticEnergy() <= limit)
57 {
59 return 0.0;
60 }
61 // If theCoulombBarrier effect is included in the emission probabilities
62 // G4double LowerLimit = 0.;
63 // Coulomb barrier is the lower limit
64 // of integration over kinetic energy
65 G4double LowerLimit = limit;
66
67 // Excitation energy of nucleus after fragment emission is the upper
68 //limit of integration over kinetic energy
69 G4double UpperLimit = GetMaximalKineticEnergy();
70
72 IntegrateEmissionProbability(LowerLimit,UpperLimit,aFragment);
73 /*
74 G4cout << "## G4PreCompoundFragment::CalcEmisProb "
75 << "Z= " << aFragment.GetZ_asInt()
76 << " A= " << aFragment.GetA_asInt()
77 << " Elow= " << LowerLimit/MeV
78 << " Eup= " << UpperLimit/MeV
79 << " prob= " << theEmissionProbability
80 << G4endl;
81 */
83}
84
85G4double G4PreCompoundFragment::
86IntegrateEmissionProbability(G4double Low, G4double Up,
87 const G4Fragment & aFragment)
88{
89 static const G4int N = 10;
90 // 10-Points Gauss-Legendre abcisas and weights
91 static const G4double w[N] = {
92 0.0666713443086881,
93 0.149451349150581,
94 0.219086362515982,
95 0.269266719309996,
96 0.295524224714753,
97 0.295524224714753,
98 0.269266719309996,
99 0.219086362515982,
100 0.149451349150581,
101 0.0666713443086881
102 };
103 static const G4double x[N] = {
104 -0.973906528517172,
105 -0.865063366688985,
106 -0.679409568299024,
107 -0.433395394129247,
108 -0.148874338981631,
109 0.148874338981631,
110 0.433395394129247,
111 0.679409568299024,
112 0.865063366688985,
113 0.973906528517172
114 };
115
116 G4double Total = 0.0;
117
118 for (G4int i = 0; i < N; ++i)
119 {
120 G4double KineticE = 0.5*((Up-Low)*x[i]+(Up+Low));
121 Total += w[i]*ProbabilityDistributionFunction(KineticE, aFragment);
122 }
123 Total *= 0.5*(Up-Low);
124 return Total;
125}
126
128GetKineticEnergy(const G4Fragment & aFragment)
129{
130 //let's keep this way for consistency with CalcEmissionProbability method
131 G4double V = 0.0;
132 if(OPTxs==0 || useSICB) { V = theCoulombBarrier; }
133
135 if(Tmax < V) { return 0.0; }
136 G4double T(0.0);
137 G4double Probability(1.0);
138 G4double maxProbability = GetEmissionProbability();
139 do
140 {
141 T = V + G4UniformRand()*(Tmax-V);
142 Probability = ProbabilityDistributionFunction(T,aFragment);
143 } while (maxProbability*G4UniformRand() > Probability);
144 return T;
145}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4UniformRand()
Definition: Randomize.hh:53
G4double CalcEmissionProbability(const G4Fragment &aFragment)
G4double GetKineticEnergy(const G4Fragment &aFragment)
virtual G4double ProbabilityDistributionFunction(G4double K, const G4Fragment &aFragment)=0
G4double GetEmissionProbability() const
G4double GetMaximalKineticEnergy() const