Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4DNABornIonisationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
31#include "G4SystemOfUnits.hh"
33#include "G4LossTableManager.hh"
36
37//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
38
39using namespace std;
40
41//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
42
44 const G4String& nam)
45 :G4VEmModel(nam),isInitialised(false)
46{
47 // nistwater = G4NistManager::Instance()->FindOrBuildMaterial("G4_WATER");
48
49 verboseLevel= 0;
50 // Verbosity scale:
51 // 0 = nothing
52 // 1 = warning for energy non-conservation
53 // 2 = details of energy budget
54 // 3 = calculation of cross sections, file openings, sampling of atoms
55 // 4 = entering in methods
56
57 if( verboseLevel>0 )
58 {
59 G4cout << "Born ionisation model is constructed " << G4endl;
60 }
61
62 //Mark this model as "applicable" for atomic deexcitation
64 fAtomDeexcitation = 0;
66 fpMolWaterDensity = 0;
67}
68
69//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
70
72{
73 // Cross section
74
75 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos;
76 for (pos = tableData.begin(); pos != tableData.end(); ++pos)
77 {
78 G4DNACrossSectionDataSet* table = pos->second;
79 delete table;
80 }
81
82 // Final state
83
84 eVecm.clear();
85 pVecm.clear();
86
87}
88
89//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
90
92 const G4DataVector& /*cuts*/)
93{
94
95 if (verboseLevel > 3)
96 G4cout << "Calling G4DNABornIonisationModel::Initialise()" << G4endl;
97
98 // Energy limits
99
100 G4String fileElectron("dna/sigma_ionisation_e_born");
101 G4String fileProton("dna/sigma_ionisation_p_born");
102
105
106 G4String electron;
107 G4String proton;
108
109 G4double scaleFactor = (1.e-22 / 3.343) * m*m;
110
111 char *path = getenv("G4LEDATA");
112
113 // *** ELECTRON
114
115 electron = electronDef->GetParticleName();
116
117 tableFile[electron] = fileElectron;
118
119 lowEnergyLimit[electron] = 11. * eV;
120 highEnergyLimit[electron] = 1. * MeV;
121
122 // Cross section
123
125 tableE->LoadData(fileElectron);
126
127 tableData[electron] = tableE;
128
129 // Final state
130
131 std::ostringstream eFullFileName;
132 eFullFileName << path << "/dna/sigmadiff_ionisation_e_born.dat";
133 std::ifstream eDiffCrossSection(eFullFileName.str().c_str());
134
135 if (!eDiffCrossSection)
136 {
137 G4Exception("G4DNABornIonisationModel::Initialise","em0003",
138 FatalException,"Missing data file:/dna/sigmadiff_ionisation_e_born.dat");
139 }
140
141 eTdummyVec.push_back(0.);
142 while(!eDiffCrossSection.eof())
143 {
144 double tDummy;
145 double eDummy;
146 eDiffCrossSection>>tDummy>>eDummy;
147 if (tDummy != eTdummyVec.back()) eTdummyVec.push_back(tDummy);
148 for (int j=0; j<5; j++)
149 {
150 eDiffCrossSection>>eDiffCrossSectionData[j][tDummy][eDummy];
151
152 // SI - only if eof is not reached !
153 if (!eDiffCrossSection.eof()) eDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
154
155 eVecm[tDummy].push_back(eDummy);
156
157 }
158 }
159
160 // *** PROTON
161
162 proton = protonDef->GetParticleName();
163
164 tableFile[proton] = fileProton;
165
166 lowEnergyLimit[proton] = 500. * keV;
167 highEnergyLimit[proton] = 100. * MeV;
168
169 // Cross section
170
172 tableP->LoadData(fileProton);
173
174 tableData[proton] = tableP;
175
176 // Final state
177
178 std::ostringstream pFullFileName;
179 pFullFileName << path << "/dna/sigmadiff_ionisation_p_born.dat";
180 std::ifstream pDiffCrossSection(pFullFileName.str().c_str());
181
182 if (!pDiffCrossSection)
183 {
184 G4Exception("G4DNABornIonisationModel::Initialise","em0003",
185 FatalException,"Missing data file:/dna/sigmadiff_ionisation_p_born.dat");
186 }
187
188 pTdummyVec.push_back(0.);
189 while(!pDiffCrossSection.eof())
190 {
191 double tDummy;
192 double eDummy;
193 pDiffCrossSection>>tDummy>>eDummy;
194 if (tDummy != pTdummyVec.back()) pTdummyVec.push_back(tDummy);
195 for (int j=0; j<5; j++)
196 {
197 pDiffCrossSection>>pDiffCrossSectionData[j][tDummy][eDummy];
198
199 // SI - only if eof is not reached !
200 if (!pDiffCrossSection.eof()) pDiffCrossSectionData[j][tDummy][eDummy]*=scaleFactor;
201
202 pVecm[tDummy].push_back(eDummy);
203 }
204 }
205
206 //
207
208 if (particle==electronDef)
209 {
210 SetLowEnergyLimit(lowEnergyLimit[electron]);
211 SetHighEnergyLimit(highEnergyLimit[electron]);
212 }
213
214 if (particle==protonDef)
215 {
216 SetLowEnergyLimit(lowEnergyLimit[proton]);
217 SetHighEnergyLimit(highEnergyLimit[proton]);
218 }
219
220 if( verboseLevel>0 )
221 {
222 G4cout << "Born ionisation model is initialized " << G4endl
223 << "Energy range: "
224 << LowEnergyLimit() / eV << " eV - "
225 << HighEnergyLimit() / keV << " keV for "
226 << particle->GetParticleName()
227 << G4endl;
228 }
229
230 // Initialize water density pointer
232
233 //
234 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
235
236 if (isInitialised) { return; }
238 isInitialised = true;
239}
240
241//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
242
244 const G4ParticleDefinition* particleDefinition,
245 G4double ekin,
246 G4double,
247 G4double)
248{
249 if (verboseLevel > 3)
250 G4cout << "Calling CrossSectionPerVolume() of G4DNABornIonisationModel" << G4endl;
251
252 if (
253 particleDefinition != G4Proton::ProtonDefinition()
254 &&
255 particleDefinition != G4Electron::ElectronDefinition()
256 )
257
258 return 0;
259
260 // Calculate total cross section for model
261
262 G4double lowLim = 0;
263 G4double highLim = 0;
264 G4double sigma=0;
265
266 G4double waterDensity = (*fpMolWaterDensity)[material->GetIndex()];
267
268 if(waterDensity!= 0.0)
269 // if (material == nistwater || material->GetBaseMaterial() == nistwater)
270 {
271 const G4String& particleName = particleDefinition->GetParticleName();
272
273 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
274 pos1 = lowEnergyLimit.find(particleName);
275 if (pos1 != lowEnergyLimit.end())
276 {
277 lowLim = pos1->second;
278 }
279
280 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
281 pos2 = highEnergyLimit.find(particleName);
282 if (pos2 != highEnergyLimit.end())
283 {
284 highLim = pos2->second;
285 }
286
287 if (ekin >= lowLim && ekin < highLim)
288 {
289 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos;
290 pos = tableData.find(particleName);
291
292 if (pos != tableData.end())
293 {
294 G4DNACrossSectionDataSet* table = pos->second;
295 if (table != 0)
296 {
297 sigma = table->FindValue(ekin);
298 }
299 }
300 else
301 {
302 G4Exception("G4DNABornIonisationModel::CrossSectionPerVolume","em0002",
303 FatalException,"Model not applicable to particle type.");
304 }
305 }
306
307 if (verboseLevel > 2)
308 {
309 G4cout << "__________________________________" << G4endl;
310 G4cout << "°°° G4DNABornIonisationModel - XS INFO START" << G4endl;
311 G4cout << "°°° Kinetic energy(eV)=" << ekin/eV << " particle : " << particleName << G4endl;
312 G4cout << "°°° Cross section per water molecule (cm^2)=" << sigma/cm/cm << G4endl;
313 G4cout << "°°° Cross section per water molecule (cm^-1)=" << sigma*waterDensity/(1./cm) << G4endl;
314 // G4cout << " - Cross section per water molecule (cm^-1)=" << sigma*material->GetAtomicNumDensityVector()[1]/(1./cm) << G4endl;
315 G4cout << "°°° G4DNABornIonisationModel - XS INFO END" << G4endl;
316 }
317
318 } // if (waterMaterial)
319
320 // return sigma*material->GetAtomicNumDensityVector()[1];
321 return sigma*waterDensity;
322}
323
324//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
325
326void G4DNABornIonisationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
327 const G4MaterialCutsCouple* ,//must be set!
328 const G4DynamicParticle* particle,
329 G4double,
330 G4double)
331{
332
333 if (verboseLevel > 3)
334 G4cout << "Calling SampleSecondaries() of G4DNABornIonisationModel" << G4endl;
335
336 G4double lowLim = 0;
337 G4double highLim = 0;
338
339 G4double k = particle->GetKineticEnergy();
340
341 const G4String& particleName = particle->GetDefinition()->GetParticleName();
342
343 std::map< G4String,G4double,std::less<G4String> >::iterator pos1;
344 pos1 = lowEnergyLimit.find(particleName);
345
346 if (pos1 != lowEnergyLimit.end())
347 {
348 lowLim = pos1->second;
349 }
350
351 std::map< G4String,G4double,std::less<G4String> >::iterator pos2;
352 pos2 = highEnergyLimit.find(particleName);
353
354 if (pos2 != highEnergyLimit.end())
355 {
356 highLim = pos2->second;
357 }
358
359 if (k >= lowLim && k < highLim)
360 {
361 G4ParticleMomentum primaryDirection = particle->GetMomentumDirection();
362 G4double particleMass = particle->GetDefinition()->GetPDGMass();
363 G4double totalEnergy = k + particleMass;
364 G4double pSquare = k * (totalEnergy + particleMass);
365 G4double totalMomentum = std::sqrt(pSquare);
366
367 G4int ionizationShell = RandomSelect(k,particleName);
368
369 // sample deexcitation
370 // here we assume that H_{2}O electronic levels are the same of Oxigen.
371 // this can be considered true with a rough 10% error in energy on K-shell,
372
373 G4int secNumberInit = 0; // need to know at a certain point the enrgy of secondaries
374 G4int secNumberFinal = 0; // So I'll make the diference and then sum the energies
375
376 G4double bindingEnergy = 0;
377 bindingEnergy = waterStructure.IonisationEnergy(ionizationShell);
378
379 if(fAtomDeexcitation) {
380 G4int Z = 8;
382
383 if (ionizationShell <5 && ionizationShell >1)
384 {
385 as = G4AtomicShellEnumerator(4-ionizationShell);
386 }
387 else if (ionizationShell <2)
388 {
390 }
391
392 // FOR DEBUG ONLY
393 // if (ionizationShell == 4) {
394 //
395 // G4cout << "Z: " << Z << " as: " << as
396 // << " ionizationShell: " << ionizationShell << " bindingEnergy: "<< bindingEnergy/eV << G4endl;
397 // G4cout << "Press <Enter> key to continue..." << G4endl;
398 // G4cin.ignore();
399 // }
400
401 const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
402 secNumberInit = fvect->size();
403 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, 0, 0);
404 secNumberFinal = fvect->size();
405 }
406
407 G4double secondaryKinetic = RandomizeEjectedElectronEnergy(particle->GetDefinition(),k,ionizationShell);
408
409 G4double cosTheta = 0.;
410 G4double phi = 0.;
411 RandomizeEjectedElectronDirection(particle->GetDefinition(), k,secondaryKinetic, cosTheta, phi);
412
413 G4double sinTheta = std::sqrt(1.-cosTheta*cosTheta);
414 G4double dirX = sinTheta*std::cos(phi);
415 G4double dirY = sinTheta*std::sin(phi);
416 G4double dirZ = cosTheta;
417 G4ThreeVector deltaDirection(dirX,dirY,dirZ);
418 deltaDirection.rotateUz(primaryDirection);
419
421 {
422 G4double deltaTotalMomentum = std::sqrt(secondaryKinetic*(secondaryKinetic + 2.*electron_mass_c2 ));
423
424 G4double finalPx = totalMomentum*primaryDirection.x() - deltaTotalMomentum*deltaDirection.x();
425 G4double finalPy = totalMomentum*primaryDirection.y() - deltaTotalMomentum*deltaDirection.y();
426 G4double finalPz = totalMomentum*primaryDirection.z() - deltaTotalMomentum*deltaDirection.z();
427 G4double finalMomentum = std::sqrt(finalPx*finalPx + finalPy*finalPy + finalPz*finalPz);
428 finalPx /= finalMomentum;
429 finalPy /= finalMomentum;
430 finalPz /= finalMomentum;
431
432 G4ThreeVector direction;
433 direction.set(finalPx,finalPy,finalPz);
434
436 }
437
438 else fParticleChangeForGamma->ProposeMomentumDirection(primaryDirection) ;
439
440 // note thta secondaryKinetic is the nergy of the delta ray, not of all secondaries.
441 G4double scatteredEnergy = k-bindingEnergy-secondaryKinetic;
442 G4double deexSecEnergy = 0;
443 for (G4int j=secNumberInit; j < secNumberFinal; j++) {
444
445 deexSecEnergy = deexSecEnergy + (*fvect)[j]->GetKineticEnergy();
446
447 }
448
450 fParticleChangeForGamma->ProposeLocalEnergyDeposit(k-scatteredEnergy-secondaryKinetic-deexSecEnergy);
451
452 G4DynamicParticle* dp = new G4DynamicParticle (G4Electron::Electron(),deltaDirection,secondaryKinetic) ;
453 fvect->push_back(dp);
454
455
456 const G4Track * theIncomingTrack = fParticleChangeForGamma->GetCurrentTrack();
458 ionizationShell,
459 theIncomingTrack);
460 }
461
462}
463
464//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
465
466G4double G4DNABornIonisationModel::RandomizeEjectedElectronEnergy(G4ParticleDefinition* particleDefinition,
467 G4double k, G4int shell)
468{
469 if (particleDefinition == G4Electron::ElectronDefinition())
470 {
471 G4double maximumEnergyTransfer=0.;
472 if ((k+waterStructure.IonisationEnergy(shell))/2. > k) maximumEnergyTransfer=k;
473 else maximumEnergyTransfer = (k+waterStructure.IonisationEnergy(shell))/2.;
474
475 // SI : original method
476 /*
477 G4double crossSectionMaximum = 0.;
478 for(G4double value=waterStructure.IonisationEnergy(shell); value<=maximumEnergyTransfer; value+=0.1*eV)
479 {
480 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
481 if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
482 }
483*/
484
485
486 // SI : alternative method
487
488 G4double crossSectionMaximum = 0.;
489
490 G4double minEnergy = waterStructure.IonisationEnergy(shell);
491 G4double maxEnergy = maximumEnergyTransfer;
492 G4int nEnergySteps = 50;
493
494 G4double value(minEnergy);
495 G4double stpEnergy(std::pow(maxEnergy/value, 1./static_cast<G4double>(nEnergySteps-1)));
496 G4int step(nEnergySteps);
497 while (step>0)
498 {
499 step--;
500 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
501 if(differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
502 value*=stpEnergy;
503 }
504 //
505
506 G4double secondaryElectronKineticEnergy=0.;
507 do
508 {
509 secondaryElectronKineticEnergy = G4UniformRand() * (maximumEnergyTransfer-waterStructure.IonisationEnergy(shell));
510 } while(G4UniformRand()*crossSectionMaximum >
511 DifferentialCrossSection(particleDefinition, k/eV,(secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
512
513 return secondaryElectronKineticEnergy;
514
515 }
516
517 else if (particleDefinition == G4Proton::ProtonDefinition())
518 {
519 G4double maximumKineticEnergyTransfer = 4.* (electron_mass_c2 / proton_mass_c2) * k;
520
521 G4double crossSectionMaximum = 0.;
522 for (G4double value = waterStructure.IonisationEnergy(shell);
523 value<=4.*waterStructure.IonisationEnergy(shell) ;
524 value+=0.1*eV)
525 {
526 G4double differentialCrossSection = DifferentialCrossSection(particleDefinition, k/eV, value/eV, shell);
527 if (differentialCrossSection >= crossSectionMaximum) crossSectionMaximum = differentialCrossSection;
528 }
529
530 G4double secondaryElectronKineticEnergy = 0.;
531 do
532 {
533 secondaryElectronKineticEnergy = G4UniformRand() * maximumKineticEnergyTransfer;
534 } while(G4UniformRand()*crossSectionMaximum >=
535 DifferentialCrossSection(particleDefinition, k/eV,(secondaryElectronKineticEnergy+waterStructure.IonisationEnergy(shell))/eV,shell));
536
537 return secondaryElectronKineticEnergy;
538 }
539
540 return 0;
541}
542
543//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
544
545void G4DNABornIonisationModel::RandomizeEjectedElectronDirection(G4ParticleDefinition* particleDefinition,
546 G4double k,
547 G4double secKinetic,
548 G4double & cosTheta,
549 G4double & phi )
550{
551 if (particleDefinition == G4Electron::ElectronDefinition())
552 {
553 phi = twopi * G4UniformRand();
554 if (secKinetic < 50.*eV) cosTheta = (2.*G4UniformRand())-1.;
555 else if (secKinetic <= 200.*eV)
556 {
557 if (G4UniformRand() <= 0.1) cosTheta = (2.*G4UniformRand())-1.;
558 else cosTheta = G4UniformRand()*(std::sqrt(2.)/2);
559 }
560 else
561 {
562 G4double sin2O = (1.-secKinetic/k) / (1.+secKinetic/(2.*electron_mass_c2));
563 cosTheta = std::sqrt(1.-sin2O);
564 }
565 }
566
567 else if (particleDefinition == G4Proton::ProtonDefinition())
568 {
569 G4double maxSecKinetic = 4.* (electron_mass_c2 / proton_mass_c2) * k;
570 phi = twopi * G4UniformRand();
571
572 // cosTheta = std::sqrt(secKinetic / maxSecKinetic);
573
574 // Restriction below 100 eV from Emfietzoglou (2000)
575
576 if (secKinetic>100*eV) cosTheta = std::sqrt(secKinetic / maxSecKinetic);
577 else cosTheta = (2.*G4UniformRand())-1.;
578
579 }
580}
581
582//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
583
585 G4double k,
586 G4double energyTransfer,
587 G4int ionizationLevelIndex)
588{
589 G4double sigma = 0.;
590
591 if (energyTransfer >= waterStructure.IonisationEnergy(ionizationLevelIndex))
592 {
593 G4double valueT1 = 0;
594 G4double valueT2 = 0;
595 G4double valueE21 = 0;
596 G4double valueE22 = 0;
597 G4double valueE12 = 0;
598 G4double valueE11 = 0;
599
600 G4double xs11 = 0;
601 G4double xs12 = 0;
602 G4double xs21 = 0;
603 G4double xs22 = 0;
604
605 if (particleDefinition == G4Electron::ElectronDefinition())
606 {
607 // k should be in eV and energy transfer eV also
608
609 std::vector<double>::iterator t2 = std::upper_bound(eTdummyVec.begin(),eTdummyVec.end(), k);
610
611 std::vector<double>::iterator t1 = t2-1;
612
613 // SI : the following condition avoids situations where energyTransfer >last vector element
614 if (energyTransfer <= eVecm[(*t1)].back() && energyTransfer <= eVecm[(*t2)].back() )
615 {
616 std::vector<double>::iterator e12 = std::upper_bound(eVecm[(*t1)].begin(),eVecm[(*t1)].end(), energyTransfer);
617 std::vector<double>::iterator e11 = e12-1;
618
619 std::vector<double>::iterator e22 = std::upper_bound(eVecm[(*t2)].begin(),eVecm[(*t2)].end(), energyTransfer);
620 std::vector<double>::iterator e21 = e22-1;
621
622 valueT1 =*t1;
623 valueT2 =*t2;
624 valueE21 =*e21;
625 valueE22 =*e22;
626 valueE12 =*e12;
627 valueE11 =*e11;
628
629 xs11 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
630 xs12 = eDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
631 xs21 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
632 xs22 = eDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
633 }
634
635 }
636
637 if (particleDefinition == G4Proton::ProtonDefinition())
638 {
639 // k should be in eV and energy transfer eV also
640 std::vector<double>::iterator t2 = std::upper_bound(pTdummyVec.begin(),pTdummyVec.end(), k);
641 std::vector<double>::iterator t1 = t2-1;
642
643 std::vector<double>::iterator e12 = std::upper_bound(pVecm[(*t1)].begin(),pVecm[(*t1)].end(), energyTransfer);
644 std::vector<double>::iterator e11 = e12-1;
645
646 std::vector<double>::iterator e22 = std::upper_bound(pVecm[(*t2)].begin(),pVecm[(*t2)].end(), energyTransfer);
647 std::vector<double>::iterator e21 = e22-1;
648
649 valueT1 =*t1;
650 valueT2 =*t2;
651 valueE21 =*e21;
652 valueE22 =*e22;
653 valueE12 =*e12;
654 valueE11 =*e11;
655
656 xs11 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE11];
657 xs12 = pDiffCrossSectionData[ionizationLevelIndex][valueT1][valueE12];
658 xs21 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE21];
659 xs22 = pDiffCrossSectionData[ionizationLevelIndex][valueT2][valueE22];
660
661 }
662
663 G4double xsProduct = xs11 * xs12 * xs21 * xs22;
664 if (xsProduct != 0.)
665 {
666 sigma = QuadInterpolator( valueE11, valueE12,
667 valueE21, valueE22,
668 xs11, xs12,
669 xs21, xs22,
670 valueT1, valueT2,
671 k, energyTransfer);
672 }
673
674 }
675
676 return sigma;
677}
678
679//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
680
681G4double G4DNABornIonisationModel::LogLogInterpolate(G4double e1,
682 G4double e2,
683 G4double e,
684 G4double xs1,
685 G4double xs2)
686{
687 G4double a = (std::log10(xs2)-std::log10(xs1)) / (std::log10(e2)-std::log10(e1));
688 G4double b = std::log10(xs2) - a*std::log10(e2);
689 G4double sigma = a*std::log10(e) + b;
690 G4double value = (std::pow(10.,sigma));
691 return value;
692}
693
694//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
695
696G4double G4DNABornIonisationModel::QuadInterpolator(G4double e11, G4double e12,
697 G4double e21, G4double e22,
698 G4double xs11, G4double xs12,
699 G4double xs21, G4double xs22,
700 G4double t1, G4double t2,
701 G4double t, G4double e)
702{
703 G4double interpolatedvalue1 = LogLogInterpolate(e11, e12, e, xs11, xs12);
704 G4double interpolatedvalue2 = LogLogInterpolate(e21, e22, e, xs21, xs22);
705 G4double value = LogLogInterpolate(t1, t2, t, interpolatedvalue1, interpolatedvalue2);
706 return value;
707}
708
709//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
710
711G4int G4DNABornIonisationModel::RandomSelect(G4double k, const G4String& particle )
712{
713 G4int level = 0;
714
715 std::map< G4String,G4DNACrossSectionDataSet*,std::less<G4String> >::iterator pos;
716 pos = tableData.find(particle);
717
718 if (pos != tableData.end())
719 {
720 G4DNACrossSectionDataSet* table = pos->second;
721
722 if (table != 0)
723 {
724 G4double* valuesBuffer = new G4double[table->NumberOfComponents()];
725 const size_t n(table->NumberOfComponents());
726 size_t i(n);
727 G4double value = 0.;
728
729 while (i>0)
730 {
731 i--;
732 valuesBuffer[i] = table->GetComponent(i)->FindValue(k);
733 value += valuesBuffer[i];
734 }
735
736 value *= G4UniformRand();
737
738 i = n;
739
740 while (i > 0)
741 {
742 i--;
743
744 if (valuesBuffer[i] > value)
745 {
746 delete[] valuesBuffer;
747 return i;
748 }
749 value -= valuesBuffer[i];
750 }
751
752 if (valuesBuffer) delete[] valuesBuffer;
753
754 }
755 }
756 else
757 {
758 G4Exception("G4DNABornIonisationModel::RandomSelect","em0002",
759 FatalException,"Model not applicable to particle type.");
760 }
761
762 return level;
763}
764
G4AtomicShellEnumerator
@ eIonizedMolecule
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
double z() const
Hep3Vector unit() const
double x() const
double y() const
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
G4DNABornIonisationModel(const G4ParticleDefinition *p=0, const G4String &nam="DNABornIonisationModel")
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
double DifferentialCrossSection(G4ParticleDefinition *aParticleDefinition, G4double k, G4double energyTransfer, G4int shell)
G4ParticleChangeForGamma * fParticleChangeForGamma
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &= *(new G4DataVector()))
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
static G4DNAChemistryManager * Instance()
void CreateWaterMolecule(ElectronicModification, G4int, const G4Track *)
virtual G4double FindValue(G4double e, G4int componentId=0) const
virtual size_t NumberOfComponents(void) const
virtual const G4VEMDataSet * GetComponent(G4int componentId) const
virtual G4bool LoadData(const G4String &argFileName)
static G4DNAMolecularMaterial * Instance()
const std::vector< double > * GetNumMolPerVolTableFor(const G4Material *) const
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * ElectronDefinition()
Definition: G4Electron.cc:89
static G4Electron * Electron()
Definition: G4Electron.cc:94
static G4LossTableManager * Instance()
G4VAtomDeexcitation * AtomDeexcitation()
size_t GetIndex() const
Definition: G4Material.hh:261
static G4Material * GetMaterial(const G4String &name, G4bool warning=true)
Definition: G4Material.cc:576
const G4Track * GetCurrentTrack() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
const G4String & GetParticleName() const
static G4Proton * ProtonDefinition()
Definition: G4Proton.cc:88
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
virtual G4double FindValue(G4double x, G4int componentId=0) const =0
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:592
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:641
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41