Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4NeutronEvaporationProbability.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// J.M. Quesada (August2008). Based on:
29//
30// Hadronic Process: Nuclear De-excitations
31// by V. Lara (Oct 1998)
32//
33// Modified:
34// 03-09-2008 J.M. Quesada for external choice of inverse cross section option
35// 17-11-2010 V.Ivanchenko integer Z and A
36
38#include "G4SystemOfUnits.hh"
39
41 G4EvaporationProbability(1,0,2,&theCoulombBarrier) // A,Z,Gamma,&theCoulombBarrier
42{
43 ResidualA = ResidualZ = theA = theZ = FragmentA = 0;
44 ResidualAthrd = FragmentAthrd = 0.0;
45}
46
48{}
49
50G4double G4NeutronEvaporationProbability::CalcAlphaParam(const G4Fragment & fragment)
51{
52 return 0.76+2.2/fG4pow->Z13(fragment.GetA_asInt()-GetA());
53}
54
55G4double G4NeutronEvaporationProbability::CalcBetaParam(const G4Fragment & fragment)
56{
57 return (2.12/fG4pow->Z23(fragment.GetA_asInt()-GetA()) - 0.05)*MeV/
58 CalcAlphaParam(fragment);
59}
60
61////////////////////////////////////////////////////////////////////////////////////
62//J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
63//OPT=0 Dostrovski's parameterization
64//OPT=1,2 Chatterjee's paramaterization
65//OPT=3,4 Kalbach's parameterization
66//
68G4NeutronEvaporationProbability::CrossSection(const G4Fragment & fragment, G4double K)
69{
70 theA=GetA();
71 theZ=GetZ();
72 ResidualA=fragment.GetA_asInt()-theA;
73 ResidualZ=fragment.GetZ_asInt()-theZ;
74
75 ResidualAthrd=fG4pow->Z13(ResidualA);
76 FragmentA=fragment.GetA_asInt();
77 FragmentAthrd=fG4pow->Z13(FragmentA);
78
79 if (OPTxs==0) {std::ostringstream errOs;
80 errOs << "We should'n be here (OPT =0) at evaporation cross section calculation (neutrons)!!" <<G4endl;
81 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
82 return 0.;}
83 else if( OPTxs==1 ||OPTxs==2) return GetOpt12( K);
84 else if (OPTxs==3 || OPTxs==4) return GetOpt34( K);
85 else{
86 std::ostringstream errOs;
87 errOs << "BAD NEUTRON CROSS SECTION OPTION AT EVAPORATION!!" <<G4endl;
88 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
89 return 0.;
90 }
91}
92
93//********************* OPT=1,2 : Chatterjee's cross section ***************
94//(fitting to cross section from Bechetti & Greenles OM potential)
95
96G4double G4NeutronEvaporationProbability::GetOpt12(G4double K)
97{
98 G4double Kc=K;
99
100 // Pramana (Bechetti & Greenles) for neutrons is chosen
101
102 // JMQ xsec is set constat above limit of validity
103 if (K > 50*MeV) { Kc = 50*MeV; }
104
105 G4double landa, landa0, landa1, mu, mum0, mu1,nu, nu0, nu1, nu2,xs;
106
107 landa0 = 18.57;
108 landa1 = -22.93;
109 mum0 = 381.7;
110 mu1 = 24.31;
111 nu0 = 0.172;
112 nu1 = -15.39;
113 nu2 = 804.8;
114 landa = landa0/ResidualAthrd + landa1;
115 mu = mum0*ResidualAthrd + mu1*ResidualAthrd*ResidualAthrd;
116 nu = nu0*ResidualAthrd*ResidualA + nu1*ResidualAthrd*ResidualAthrd + nu2 ;
117 xs=landa*Kc + mu + nu/Kc;
118 if (xs <= 0.0 ){
119 std::ostringstream errOs;
120 G4cout<<"WARNING: NEGATIVE OPT=1 neutron cross section "<<G4endl;
121 errOs << "RESIDUAL: Ar=" << ResidualA << " Zr=" << ResidualZ <<G4endl;
122 errOs <<" xsec("<<Kc<<" MeV) ="<<xs <<G4endl;
123 throw G4HadronicException(__FILE__, __LINE__, errOs.str());
124 }
125 return xs;
126}
127
128// *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
129G4double G4NeutronEvaporationProbability::GetOpt34(G4double K)
130{
131 G4double landa, landa0, landa1, mu, mum0, mu1,nu, nu0, nu1, nu2;
132 G4double p, p0;
133 G4double flow,ec,ecsq,xnulam,etest(0.),ra(0.),a,signor(1.),sig;
134 G4double b,ecut,cut,ecut2,geom,elab;
135
136 //safety initialization
137 landa0=0;
138 landa1=0;
139 mum0=0.;
140 mu1=0.;
141 nu0=0.;
142 nu1=0.;
143 nu2=0.;
144 p0=0.;
145
146 flow = 1.e-18;
147
148 // PRECO xs for neutrons is choosen
149 p0 = -312.;
150 landa0 = 12.10;
151 landa1= -11.27;
152 mum0 = 234.1;
153 mu1 = 38.26;
154 nu0 = 1.55;
155 nu1 = -106.1;
156 nu2 = 1280.8;
157
158 if (ResidualA < 40) { signor =0.7 + ResidualA*0.0075; }
159 if (ResidualA > 210) { signor = 1. + (ResidualA-210)/250.; }
160 landa = landa0/ResidualAthrd + landa1;
161 mu = mum0*ResidualAthrd + mu1*ResidualAthrd*ResidualAthrd;
162 nu = nu0*ResidualAthrd*ResidualA + nu1*ResidualAthrd*ResidualAthrd + nu2;
163
164 // JMQ very low energy behaviour corrected (problem for A (apprx.)>60)
165 if (nu < 0.) { nu=-nu; }
166
167 ec = 0.5;
168 ecsq = 0.25;
169 p = p0;
170 xnulam = 1.;
171 etest = 32.;
172 // ** etest is the energy above which the rxn cross section is
173 // ** compared with the geometrical limit and the max taken.
174 // ** xnulam here is a dummy value to be used later.
175
176 a = -2.*p*ec + landa - nu/ecsq;
177 b = p*ecsq + mu + 2.*nu/ec;
178 ecut = 0.;
179 cut = a*a - 4.*p*b;
180 if (cut > 0.) { ecut = std::sqrt(cut); }
181 ecut = (ecut-a) / (p+p);
182 ecut2 = ecut;
183 if (cut < 0.) { ecut2 = ecut - 2.; }
184 elab = K * FragmentA / G4double(ResidualA);
185 sig = 0.;
186 if (elab <= ec) { //start for E<Ec
187 if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
188 } //end for E<Ec
189 else { //start for E>Ec
190 sig = (landa*elab+mu+nu/elab) * signor;
191 geom = 0.;
192 if (xnulam < flow || elab < etest) { return sig; }
193 geom = std::sqrt(theA*K);
194 geom = 1.23*ResidualAthrd + ra + 4.573/geom;
195 geom = 31.416 * geom * geom;
196 sig = std::max(geom,sig);
197
198 }
199 return sig;
200}
201
double G4double
Definition: G4Types.hh:64
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4int GetZ_asInt() const
Definition: G4Fragment.hh:223
G4int GetA_asInt() const
Definition: G4Fragment.hh:218
G4double Z23(G4int Z)
Definition: G4Pow.hh:134
G4double Z13(G4int Z)
Definition: G4Pow.hh:110