Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4WaterStopping.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27
28//---------------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32// Description: Data on stopping power
33//
34// Author: V.Ivanchenko 12.05.2006
35//
36// Modifications:
37// 29.04.2009 A.Ivantchenko added revised data for G4WATER, provided by
38// Prof.P.Sigmund Univ. Southern Denmark in the framework of
39// the ESA Technology Research Programme (ESA contract 21435/08/NL/AT)
40//
41//----------------------------------------------------------------------------
42//
43
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
45
46#include "G4WaterStopping.hh"
47#include "G4SystemOfUnits.hh"
48#include "G4EmCorrections.hh"
50
51//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
52
54{
55 spline = splineFlag;
56 dedx.reserve(17);
57 Initialise(corr);
58}
59
60//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
61
63{}
64
65//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
66
68{
69 G4double res = 0.0;
70 G4int idx = iz - 3;
71
72 if(iz == 26) { idx = 16; }
73 else if (iz < 3 || iz > 18) { return res; }
74
75 G4double scaledEnergy = energy/A[idx];
76 if(scaledEnergy < emin) {
77 res = (*(dedx[idx]))[0]*std::sqrt(scaledEnergy/emin);
78 } else {
79 res = (dedx[idx])->Value(scaledEnergy);
80 }
81 return res;
82}
83
84//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
85
86void G4WaterStopping::AddData(G4double* energy, G4double* stoppower,
87 G4double factor)
88{
89 G4LPhysicsFreeVector* pv = new G4LPhysicsFreeVector(53,energy[0]*MeV,energy[52]*MeV);
90 pv->SetSpline(spline);
91 dedx.push_back(pv);
92 for(G4int i=0; i<53; ++i) {
93 pv->PutValues(i,energy[i]*MeV,stoppower[i]*factor);
94 }
95}
96
97//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
98
99void G4WaterStopping::Initialise(G4EmCorrections* corr)
100{
101 G4int i;
102 //..List of ions
103 G4int zz[17] = {3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14,15,16,17,18,26};
104 G4int aa[17] = {7, 9, 11, 12, 14, 16, 19, 20, 23, 24, 27, 28,31,32, 35,40,56};
105 for(i=0; i<17; ++i) {
106 Z[i] = zz[i];
107 A[i] = G4double(aa[i]);
108 }
109 //..Reduced energies
110 G4double E[53] = {0.025,0.03,0.04,0.05,0.06,0.07,0.08,0.09,0.1,0.15,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.5,2,2.5,3,4,5,6,7,8,9,10,15,20,25,30,40,50,60,70,80,90,100,150,200,250,300,400,500,600,700,800,900,1000};
111 emin = E[0]*MeV;
112 G4double factor = 1000.*MeV/cm;
113
114 G4double G4_WATER_Li[53]={2.3193,2.5198,2.8539,3.1164,3.3203,3.4756,3.5914,3.6755,3.7347,3.8125,3.7349,3.6134,3.4818,3.2258,2.9949,2.7909,2.611,2.4517,2.3103,2.1841,1.7151,1.4139,1.2053,1.0525,0.84417,0.70862,0.61317,0.54214,0.48708,0.44305,0.40697,0.29312,0.23208,0.19364,0.16706,0.13252,0.11092,0.09608,0.08522,0.076915,0.07035,0.065026,0.048615,0.040137,0.034964,0.03149,0.027148,0.024579,0.022911,0.021761,0.020937,0.020327,0.019862};
115 AddData(E,G4_WATER_Li,factor);
116 G4double G4_WATER_Be[53]={2.872,3.1439,3.6102,3.9967,4.3169,4.5788,4.7897,4.9568,5.0872,5.387,5.4028,5.3185,5.1971,4.9243,4.6549,4.4036,4.1732,3.9629,3.771,3.5957,2.9117,2.4439,2.1062,1.8518,1.4956,1.2587,1.0901,0.96393,0.86589,0.78742,0.72313,0.52053,0.41214,0.34394,0.2968,0.2355,0.19717,0.17081,0.15152,0.13676,0.1251,0.11564,0.086471,0.071399,0.062202,0.056023,0.048303,0.043734,0.040767,0.038723,0.037256,0.036172,0.035345};
117 AddData(E,G4_WATER_Be,factor);
118 G4double G4_WATER_B[53]={3.2922,3.6315,4.2226,4.7242,5.1543,5.5219,5.8323,6.0911,6.3043,6.8888,7.0451,7.0309,6.9445,6.6925,6.4129,6.1372,5.8747,5.6283,5.3983,5.1841,4.3121,3.6826,3.2109,2.8459,2.3203,1.9619,1.7028,1.5072,1.3543,1.2315,1.1307,0.81305,0.64344,0.53693,0.46337,0.36777,0.30797,0.26684,0.23674,0.21371,0.1955,0.18072,0.13517,0.11163,0.097256,0.087601,0.075535,0.068395,0.063757,0.060561,0.058268,0.056574,0.05528};
119 AddData(E,G4_WATER_B,factor);
120 G4double G4_WATER_C[53]={3.6037,4.0035,4.7125,5.3248,5.8601,6.3287,6.7363,7.0875,7.3872,8.2986,8.635,8.7189,8.6879,8.485,8.2162,7.9331,7.6534,7.3839,7.1272,6.884,5.8573,5.0814,4.4808,4.0044,3.3005,2.808,2.4458,2.1691,1.9511,1.7751,1.6302,1.1714,0.9263,0.77269,0.66676,0.52925,0.44328,0.38415,0.34086,0.30773,0.28154,0.26028,0.19473,0.16083,0.14014,0.12624,0.10886,0.098575,0.091894,0.08729,0.083986,0.081545,0.079682};
121 AddData(E,G4_WATER_C,factor);
122 G4double G4_WATER_N[53]={3.8821,4.3278,5.1314,5.8371,6.4632,7.021,7.5168,7.9545,8.3378,9.5943,10.145,10.356,10.402,10.278,10.041,9.7677,9.4845,9.2035,8.9301,8.6668,7.5173,6.6126,5.8919,5.308,4.4226,3.7883,3.3138,2.9467,2.655,2.4179,2.2217,1.5965,1.2614,1.0516,0.90715,0.71995,0.60305,0.52268,0.46384,0.41882,0.3832,0.35431,0.26515,0.21903,0.19087,0.17194,0.14829,0.13429,0.12519,0.11892,0.11442,0.1111,0.10856};
123 AddData(E,G4_WATER_N,factor);
124 G4double G4_WATER_O[53]={4.1215,4.6063,5.4945,6.2868,6.9978,7.6391,8.2175,8.7372,9.201,10.808,11.596,11.955,12.096,12.077,11.89,11.639,11.364,11.081,10.799,10.523,9.2787,8.2615,7.4307,6.7431,5.6787,4.8981,4.3045,3.8393,3.4663,3.161,2.9069,2.0903,1.6501,1.3745,1.1851,0.94004,0.78733,0.68244,0.60568,0.54694,0.50048,0.46278,0.34643,0.28622,0.24945,0.22474,0.19384,0.17555,0.16367,0.15547,0.14959,0.14525,0.14194};
125 AddData(E,G4_WATER_O,factor);
126 G4double G4_WATER_F[53]={4.2951,4.8107,5.7678,6.6342,7.4196,8.1343,8.7858,9.3786,9.9152,11.857,12.89,13.408,13.652,13.749,13.62,13.398,13.136,12.857,12.573,12.291,10.982,9.88,8.9601,8.1871,6.9687,6.0574,5.3535,4.7954,4.3434,3.9704,3.658,2.642,2.0878,1.7393,1.4994,1.1892,0.99601,0.86336,0.76632,0.69207,0.63334,0.58568,0.43857,0.36242,0.3159,0.28462,0.24552,0.22237,0.20733,0.19696,0.18951,0.18401,0.17981};
127 AddData(E,G4_WATER_F,factor);
128 G4double G4_WATER_Ne[53]={4.4513,4.991,6.004,6.9338,7.7852,8.5662,9.284,9.9435,10.547,12.813,14.099,14.791,15.151,15.382,15.321,15.136,14.895,14.626,14.345,14.061,12.705,11.53,10.532,9.6823,8.3208,7.2846,6.4735,5.8234,5.2919,4.8502,4.4779,3.252,2.5745,2.146,1.8503,1.4675,1.2291,1.0654,0.94575,0.85419,0.78178,0.72301,0.54158,0.44763,0.39022,0.35162,0.30335,0.27477,0.25619,0.24339,0.23419,0.2274,0.22222};
129 AddData(E,G4_WATER_Ne,factor);
130 G4double G4_WATER_Na[53]={4.5914,5.1553,6.2244,7.2203,8.1435,8.9982,9.7906,10.526,11.206,13.848,15.453,16.384,16.916,17.369,17.442,17.344,17.16,16.93,16.675,16.407,15.045,13.799,12.706,11.753,10.187,8.9672,7.9956,7.2072,6.5562,6.0112,5.5493,4.0154,3.1635,2.6262,2.2573,1.7832,1.4904,1.2907,1.1451,1.0339,0.94615,0.87498,0.65548,0.54186,0.47243,0.42574,0.36734,0.33275,0.31027,0.29478,0.28364,0.27542,0.26915};
131 AddData(E,G4_WATER_Na,factor);
132 G4double G4_WATER_Mg[53]={4.7537,5.3178,6.3962,7.4137,8.3663,9.2554,10.085,10.859,11.581,14.455,16.279,17.373,18.018,18.598,18.727,18.654,18.479,18.25,17.99,17.716,16.313,15.026,13.895,12.907,11.277,9.9981,8.9727,8.1344,7.4376,6.8507,6.35,4.6625,3.7049,3.0916,2.666,2.1135,1.7695,1.5336,1.3613,1.2296,1.1255,1.041,0.7802,0.64511,0.56252,0.50698,0.43749,0.39634,0.36958,0.35114,0.33789,0.3281,0.32063};
133 AddData(E,G4_WATER_Mg,factor);
134 G4double G4_WATER_Al[53]={4.911,5.4856,6.5852,7.6302,8.6193,9.551,10.426,11.248,12.018,15.152,17.23,18.531,19.33,20.11,20.354,20.352,20.224,20.024,19.785,19.521,18.12,16.795,15.611,14.565,12.819,11.431,10.305,9.3772,8.6003,7.9413,7.3761,5.45,4.342,3.6272,3.129,2.4808,2.0767,1.7997,1.5975,1.4429,1.3207,1.2216,0.91581,0.75739,0.66053,0.59537,0.51383,0.46554,0.43413,0.41248,0.39693,0.38544,0.37667};
135 AddData(E,G4_WATER_Al,factor);
136 G4double G4_WATER_Si[53]={5.0697,5.6529,6.77,7.8376,8.8564,9.8229,10.736,11.597,12.409,15.773,18.09,19.594,20.549,21.535,21.9,21.975,21.896,21.73,21.513,21.265,19.878,18.525,17.298,16.202,14.354,12.867,11.651,10.64,9.7876,9.0607,8.4341,6.2756,5.0169,4.1981,3.6247,2.8758,2.4078,2.0868,1.8523,1.6731,1.5315,1.4167,1.0623,0.8787,0.76644,0.69091,0.59637,0.54036,0.50394,0.47883,0.46078,0.44746,0.43728};
137 AddData(E,G4_WATER_Si,factor);
138 G4double G4_WATER_P[53]={5.2616,5.8538,6.9867,8.074,9.1192,10.117,11.065,11.964,12.815,16.396,18.945,20.657,21.779,22.993,23.502,23.672,23.659,23.54,23.356,23.132,21.792,20.425,19.162,18.02,16.066,14.472,13.155,12.051,11.114,10.311,9.6149,7.1917,5.7614,4.8249,4.1667,3.305,2.7661,2.3966,2.1269,1.9215,1.7603,1.6263,1.2197,1.0091,0.88027,0.79361,0.68512,0.62083,0.57902,0.55019,0.52947,0.51417,0.50248};
139 AddData(E,G4_WATER_P,factor);
140 G4double G4_WATER_S[53]={5.4129,6.0193,7.1761,8.2871,9.36,10.39,11.373,12.308,13.196,16.986,19.762,21.683,22.976,24.431,25.091,25.363,25.421,25.354,25.208,25.013,23.734,22.366,21.074,19.891,17.84,16.146,14.731,13.536,12.516,11.636,10.869,8.1727,6.5617,5.4997,4.7505,3.7671,3.1514,2.7293,2.4215,2.1866,2.0012,1.8509,1.3881,1.1485,1.002,0.90348,0.78008,0.70695,0.65938,0.62657,0.60299,0.58558,0.57229};
141 AddData(E,G4_WATER_S,factor);
142 G4double G4_WATER_Cl[53]={5.6171,6.2307,7.3984,8.5209,9.6097,10.661,11.669,12.632,13.551,17.518,20.497,22.615,24.076,25.769,26.58,26.953,27.082,27.066,26.958,26.791,25.579,24.214,22.901,21.685,19.553,17.771,16.271,14.996,13.9,12.949,12.118,9.1688,7.385,6.2003,5.3604,4.2535,3.5588,3.0821,2.7343,2.4689,2.2595,2.0898,1.5673,1.297,1.1318,1.0205,0.88128,0.79874,0.74504,0.708,0.68138,0.66172,0.64671};
143 AddData(E,G4_WATER_Cl,factor);
144 G4double G4_WATER_Ar[53]={5.7158,6.3394,7.5204,8.6525,9.7528,10.82,11.849,12.836,13.78,17.904,21.07,23.375,24.999,26.928,27.889,28.361,28.559,28.592,28.521,28.381,27.228,25.869,24.541,23.299,21.103,19.255,17.686,16.346,15.19,14.183,13.3,10.137,8.2021,6.9062,5.9819,4.757,3.9841,3.4523,3.0636,2.7668,2.5324,2.3425,1.7573,1.4546,1.2694,1.1448,0.98872,0.8962,0.83601,0.79448,0.76464,0.74259,0.72575};
145 AddData(E,G4_WATER_Ar,factor);
146
147 G4double G4_WATER_Fe [53]={6.5394, 7.3060, 8.7367, 10.0690, 11.3310, 12.5470, 13.7280, 14.8780, 15.9980, 21.1160, 25.4850, 29.1260, 32.0640, 36.1770, 38.6920, 40.2760, 41.2950, 41.9530, 42.3710, 42.6210, 42.5910, 41.6900, 40.5190, 39.2690, 36.8000, 34.5040, 32.4190, 30.5410, 28.8480, 27.3170, 25.9310, 20.6170, 17.0680, 14.5540, 12.6930, 10.1410, 8.4892, 7.3402, 6.4976, 5.8545, 5.3479, 4.9387, 3.6892, 3.0503, 2.6620, 2.4014, 2.0756, 1.8825, 1.7569, 1.6702, 1.6079, 1.5619, 1.5267};
148 AddData(E,G4_WATER_Fe,factor);
149
150 if(corr) {
151 for(i=0; i<17; ++i) {corr->AddStoppingData(Z[i], aa[i], "G4_WATER", dedx[i]);}
152 }
153}
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
void AddStoppingData(G4int Z, G4int A, const G4String &materialName, G4PhysicsVector *dVector)
void PutValues(size_t binNumber, G4double binValue, G4double dataValue)
void SetSpline(G4bool)
G4double GetElectronicDEDX(G4int Z, G4double energy)
G4WaterStopping(G4EmCorrections *corr=0, G4bool splineFlag=true)