Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4XTRTransparentRegRadModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27
28#include <complex>
29
32#include "Randomize.hh"
33#include "G4Integrator.hh"
34#include "G4Gamma.hh"
35
36////////////////////////////////////////////////////////////////////////////
37//
38// Constructor, destructor
39
41 G4Material* foilMat,G4Material* gasMat,
42 G4double a, G4double b, G4int n,
43 const G4String& processName) :
44 G4VXTRenergyLoss(anEnvelope,foilMat,gasMat,a,b,n,processName)
45{
46 G4cout<<"Regular transparent X-ray TR radiator EM process is called"<<G4endl;
47
48 // Build energy and angular integral spectra of X-ray TR photons from
49 // a radiator
50 fExitFlux = true;
51 fAlphaPlate = 10000;
52 fAlphaGas = 1000;
53
54 // BuildTable();
55}
56
57///////////////////////////////////////////////////////////////////////////
58
60{
61 ;
62}
63
64///////////////////////////////////////////////////////////////////////////
65//
66//
67
69{
70 G4double result, sum = 0., tmp, cof1, cof2, cofMin, cofPHC,aMa, bMb, sigma;
71 G4int k, kMax, kMin;
72
73 aMa = GetPlateLinearPhotoAbs(energy);
74 bMb = GetGasLinearPhotoAbs(energy);
75
76 if(fCompton)
77 {
78 aMa += GetPlateCompton(energy);
79 bMb += GetGasCompton(energy);
80 }
81 aMa *= fPlateThick;
82 bMb *= fGasThick;
83
84 sigma = aMa + bMb;
85
86 cofPHC = 4*pi*hbarc;
87 tmp = (fSigma1 - fSigma2)/cofPHC/energy;
88 cof1 = fPlateThick*tmp;
89 cof2 = fGasThick*tmp;
90
91 cofMin = energy*(fPlateThick + fGasThick)/fGamma/fGamma;
92 cofMin += (fPlateThick*fSigma1 + fGasThick*fSigma2)/energy;
93 cofMin /= cofPHC;
94
95 // if (fGamma < 1200) kMin = G4int(cofMin); // 1200 ?
96 // else kMin = 1;
97
98
99 kMin = G4int(cofMin);
100 if (cofMin > kMin) kMin++;
101
102 // tmp = (fPlateThick + fGasThick)*energy*fMaxThetaTR;
103 // tmp /= cofPHC;
104 // kMax = G4int(tmp);
105 // if(kMax < 0) kMax = 0;
106 // kMax += kMin;
107
108
109 kMax = kMin + 19; // 5; // 9; // kMin + G4int(tmp);
110
111 // tmp /= fGamma;
112 // if( G4int(tmp) < kMin ) kMin = G4int(tmp);
113 // G4cout<<"kMin = "<<kMin<<"; kMax = "<<kMax<<G4endl;
114
115 for( k = kMin; k <= kMax; k++ )
116 {
117 tmp = pi*fPlateThick*(k + cof2)/(fPlateThick + fGasThick);
118 result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
119
120 if( k == kMin && kMin == G4int(cofMin) )
121 {
122 sum += 0.5*std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
123 }
124 else
125 {
126 sum += std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/result;
127 }
128 // G4cout<<"k = "<<k<<"; sum = "<<sum<<G4endl;
129 }
130 result = 4.*( cof1 + cof2 )*( cof1 + cof2 )*sum/energy;
131 result *= ( 1. - std::exp(-fPlateNumber*sigma) )/( 1. - std::exp(-sigma) );
132 return result;
133}
134
135
136///////////////////////////////////////////////////////////////////////////
137//
138// Approximation for radiator interference factor for the case of
139// fully Regular radiator. The plate and gas gap thicknesses are fixed .
140// The mean values of the plate and gas gap thicknesses
141// are supposed to be about XTR formation zones but much less than
142// mean absorption length of XTR photons in coresponding material.
143
146 G4double gamma, G4double varAngle )
147{
148 /*
149 G4double result, Za, Zb, Ma, Mb, sigma;
150
151 Za = GetPlateFormationZone(energy,gamma,varAngle);
152 Zb = GetGasFormationZone(energy,gamma,varAngle);
153 Ma = GetPlateLinearPhotoAbs(energy);
154 Mb = GetGasLinearPhotoAbs(energy);
155 sigma = Ma*fPlateThick + Mb*fGasThick;
156
157 G4complex Ca(1.0+0.5*fPlateThick*Ma/fAlphaPlate,fPlateThick/Za/fAlphaPlate);
158 G4complex Cb(1.0+0.5*fGasThick*Mb/fAlphaGas,fGasThick/Zb/fAlphaGas);
159
160 G4complex Ha = std::pow(Ca,-fAlphaPlate);
161 G4complex Hb = std::pow(Cb,-fAlphaGas);
162 G4complex H = Ha*Hb;
163 G4complex F1 = (1.0 - Ha)*(1.0 - Hb )/(1.0 - H)
164 * G4double(fPlateNumber) ;
165 G4complex F2 = (1.0-Ha)*(1.0-Ha)*Hb/(1.0-H)/(1.0-H)
166 * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) ;
167 // *(1.0 - std::pow(H,fPlateNumber)) ;
168 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
169 // G4complex R = F2*OneInterfaceXTRdEdx(energy,gamma,varAngle);
170 result = 2.0*std::real(R);
171 return result;
172 */
173 // numerically unstable result
174
175 G4double result, Qa, Qb, Q, aZa, bZb, aMa, bMb, D, sigma;
176
177 aZa = fPlateThick/GetPlateFormationZone(energy,gamma,varAngle);
178 bZb = fGasThick/GetGasFormationZone(energy,gamma,varAngle);
180 bMb = fGasThick*GetGasLinearPhotoAbs(energy);
181 sigma = aMa*fPlateThick + bMb*fGasThick;
182 Qa = std::exp(-0.5*aMa);
183 Qb = std::exp(-0.5*bMb);
184 Q = Qa*Qb;
185
186 G4complex Ha( Qa*std::cos(aZa), -Qa*std::sin(aZa) );
187 G4complex Hb( Qb*std::cos(bZb), -Qb*std::sin(bZb) );
188 G4complex H = Ha*Hb;
189 G4complex Hs = conj(H);
190 D = 1.0 /( (1 - Q)*(1 - Q) +
191 4*Q*std::sin(0.5*(aZa + bZb))*std::sin(0.5*(aZa + bZb)) );
192 G4complex F1 = (1.0 - Ha)*(1.0 - Hb)*(1.0 - Hs)
194 G4complex F2 = (1.0 - Ha)*(1.0 - Ha)*Hb*(1.0 - Hs)*(1.0 - Hs)
195 // * (1.0 - std::pow(H,fPlateNumber)) * D*D;
196 * (1.0 - std::exp(-0.5*fPlateNumber*sigma)) * D*D;
197 G4complex R = (F1 + F2)*OneInterfaceXTRdEdx(energy,gamma,varAngle);
198 result = 2.0*std::real(R);
199 return result;
200
201}
202
203
204//
205//
206////////////////////////////////////////////////////////////////////////////
207
208
209
210
211
212
213
214
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
std::complex< G4double > G4complex
Definition: G4Types.hh:69
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
G4double GetPlateLinearPhotoAbs(G4double)
G4double GetGasFormationZone(G4double, G4double, G4double)
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
G4double GetGasCompton(G4double)
G4double GetPlateFormationZone(G4double, G4double, G4double)
G4double GetGasLinearPhotoAbs(G4double)
G4double GetPlateCompton(G4double)
G4XTRTransparentRegRadModel(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRTransparentRegRadModel")
G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle)
G4double SpectralXTRdEdx(G4double energy)