Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4MuPairProductionModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4MuPairProductionModel
34//
35// Author: Vladimir Ivanchenko on base of Laszlo Urban code
36//
37// Creation date: 24.06.2002
38//
39// Modifications:
40//
41// 04-12-02 Change G4DynamicParticle constructor in PostStep (V.Ivanchenko)
42// 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
43// 24-01-03 Fix for compounds (V.Ivanchenko)
44// 27-01-03 Make models region aware (V.Ivanchenko)
45// 13-02-03 Add model (V.Ivanchenko)
46// 06-06-03 Fix in cross section calculation for high energy (V.Ivanchenko)
47// 20-10-03 2*xi in ComputeDDMicroscopicCrossSection (R.Kokoulin)
48// 8 integration points in ComputeDMicroscopicCrossSection
49// 12-01-04 Take min cut of e- and e+ not its sum (V.Ivanchenko)
50// 10-02-04 Update parameterisation using R.Kokoulin model (V.Ivanchenko)
51// 28-04-04 For complex materials repeat calculation of max energy for each
52// material (V.Ivanchenko)
53// 01-11-04 Fix bug inside ComputeDMicroscopicCrossSection (R.Kokoulin)
54// 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko)
55// 03-08-05 Add SetParticle method (V.Ivantchenko)
56// 23-10-05 Add protection in sampling of e+e- pair energy needed for
57// low cuts (V.Ivantchenko)
58// 13-02-06 Add ComputeCrossSectionPerAtom (mma)
59// 24-04-07 Add protection in SelectRandomAtom method (V.Ivantchenko)
60// 12-05-06 Updated sampling (use cut) in SelectRandomAtom (A.Bogdanov)
61// 11-10-07 Add ignoreCut flag (V.Ivanchenko)
62
63//
64// Class Description:
65//
66//
67// -------------------------------------------------------------------
68//
69//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
70//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
71
74#include "G4SystemOfUnits.hh"
75#include "G4Electron.hh"
76#include "G4Positron.hh"
77#include "G4MuonMinus.hh"
78#include "G4MuonPlus.hh"
79#include "Randomize.hh"
80#include "G4Material.hh"
81#include "G4Element.hh"
82#include "G4ElementVector.hh"
86
87//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
88
89// static members
90//
91G4double G4MuPairProductionModel::zdat[]={1., 4., 13., 29., 92.};
92G4double G4MuPairProductionModel::adat[]={1.01, 9.01, 26.98, 63.55, 238.03};
93G4double G4MuPairProductionModel::tdat[]={1.e3, 1.e4, 1.e5, 1.e6, 1.e7, 1.e8,
94 1.e9, 1.e10};
95G4double G4MuPairProductionModel::xgi[]={ 0.0199, 0.1017, 0.2372, 0.4083,
96 0.5917, 0.7628, 0.8983, 0.9801 };
97G4double G4MuPairProductionModel::wgi[]={ 0.0506, 0.1112, 0.1569, 0.1813,
98 0.1813, 0.1569, 0.1112, 0.0506 };
99
100//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
101
102using namespace std;
103
105 const G4String& nam)
106 : G4VEmModel(nam),
107 particle(0),
108 factorForCross(4.*fine_structure_const*fine_structure_const
109 *classic_electr_radius*classic_electr_radius/(3.*pi)),
110 sqrte(sqrt(exp(1.))),
111 currentZ(0),
112 fParticleChange(0),
113 minPairEnergy(4.*electron_mass_c2),
114 lowestKinEnergy(GeV),
115 nzdat(5),
116 ntdat(8),
117 nbiny(1000),
118 nmaxElements(0),
119 ymin(-5.),
120 ymax(0.),
121 dy((ymax-ymin)/nbiny),
122 samplingTablesAreFilled(false)
123{
124 SetLowEnergyLimit(minPairEnergy);
126
127 theElectron = G4Electron::Electron();
128 thePositron = G4Positron::Positron();
129
130 particleMass = lnZ = z13 = z23 = 0;
131
132 for(size_t i=0; i<1001; ++i) { ya[i] = 0.0; }
133
134 if(p) { SetParticle(p); }
135}
136
137//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
138
140{}
141
142//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
143
145 const G4MaterialCutsCouple* )
146{
147 return minPairEnergy;
148}
149
150//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
151
153 G4double kineticEnergy)
154{
155 G4double maxPairEnergy = kineticEnergy + particleMass*(1.0 - 0.75*sqrte*z13);
156 return maxPairEnergy;
157}
158
159//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
160
162 const G4DataVector&)
163{
164 if (!samplingTablesAreFilled) {
165 if(p) { SetParticle(p); }
166 MakeSamplingTables();
167 }
168 if(!fParticleChange) { fParticleChange = GetParticleChangeForLoss(); }
169}
170
171//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
172
174 const G4Material* material,
176 G4double kineticEnergy,
177 G4double cutEnergy)
178{
179 G4double dedx = 0.0;
180 if (cutEnergy <= minPairEnergy || kineticEnergy <= lowestKinEnergy)
181 { return dedx; }
182
183 const G4ElementVector* theElementVector = material->GetElementVector();
184 const G4double* theAtomicNumDensityVector =
185 material->GetAtomicNumDensityVector();
186
187 // loop for elements in the material
188 for (size_t i=0; i<material->GetNumberOfElements(); ++i) {
189 G4double Z = (*theElementVector)[i]->GetZ();
191 G4double tmax = MaxSecondaryEnergy(particle, kineticEnergy);
192 G4double loss = ComputMuPairLoss(Z, kineticEnergy, cutEnergy, tmax);
193 dedx += loss*theAtomicNumDensityVector[i];
194 }
195 if (dedx < 0.) { dedx = 0.; }
196 return dedx;
197}
198
199//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
200
202 G4double tkin,
203 G4double cutEnergy,
204 G4double tmax)
205{
207 G4double loss = 0.0;
208
209 G4double cut = std::min(cutEnergy,tmax);
210 if(cut <= minPairEnergy) { return loss; }
211
212 // calculate the rectricted loss
213 // numerical integration in log(PairEnergy)
214 G4double ak1=6.9;
215 G4double ak2=1.0;
216 G4double aaa = log(minPairEnergy);
217 G4double bbb = log(cut);
218 G4int kkk = (G4int)((bbb-aaa)/ak1+ak2);
219 if (kkk > 8) kkk = 8;
220 G4double hhh = (bbb-aaa)/(G4double)kkk;
221 G4double x = aaa;
222
223 for (G4int l=0 ; l<kkk; l++)
224 {
225
226 for (G4int ll=0; ll<8; ll++)
227 {
228 G4double ep = exp(x+xgi[ll]*hhh);
229 loss += wgi[ll]*ep*ep*ComputeDMicroscopicCrossSection(tkin, Z, ep);
230 }
231 x += hhh;
232 }
233 loss *= hhh;
234 if (loss < 0.) loss = 0.;
235 return loss;
236}
237
238//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
239
241 G4double tkin,
242 G4double Z,
243 G4double cut)
244{
245 G4double cross = 0.;
248 if (tmax <= cut) { return cross; }
249
250 G4double ak1=6.9 ;
251 G4double ak2=1.0 ;
252 G4double aaa = log(cut);
253 G4double bbb = log(tmax);
254 G4int kkk = (G4int)((bbb-aaa)/ak1 + ak2);
255 if(kkk > 8) { kkk = 8; }
256 G4double hhh = (bbb-aaa)/G4double(kkk);
257 G4double x = aaa;
258
259 for(G4int l=0; l<kkk; ++l)
260 {
261 for(G4int i=0; i<8; ++i)
262 {
263 G4double ep = exp(x + xgi[i]*hhh);
264 cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep);
265 }
266 x += hhh;
267 }
268
269 cross *= hhh;
270 if(cross < 0.0) { cross = 0.0; }
271 return cross;
272}
273
275 G4double tkin,
276 G4double Z,
277 G4double pairEnergy)
278 // Calculates the differential (D) microscopic cross section
279 // using the cross section formula of R.P. Kokoulin (18/01/98)
280 // Code modified by R.P. Kokoulin, V.N. Ivanchenko (27/01/04)
281{
282 G4double bbbtf= 183. ;
283 G4double bbbh = 202.4 ;
284 G4double g1tf = 1.95e-5 ;
285 G4double g2tf = 5.3e-5 ;
286 G4double g1h = 4.4e-5 ;
287 G4double g2h = 4.8e-5 ;
288
289 G4double totalEnergy = tkin + particleMass;
290 G4double residEnergy = totalEnergy - pairEnergy;
291 G4double massratio = particleMass/electron_mass_c2 ;
292 G4double massratio2 = massratio*massratio ;
293 G4double cross = 0.;
294
296
297 G4double c3 = 0.75*sqrte*particleMass;
298 if (residEnergy <= c3*z13) { return cross; }
299
300 G4double c7 = 4.*electron_mass_c2;
302 G4double alf = c7/pairEnergy;
303 G4double a3 = 1. - alf;
304 if (a3 <= 0.) { return cross; }
305
306 // zeta calculation
307 G4double bbb,g1,g2;
308 if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = g2h ; }
309 else { bbb = bbbtf; g1 = g1tf; g2 = g2tf; }
310
311 G4double zeta = 0;
312 G4double zeta1 = 0.073*log(totalEnergy/(particleMass+g1*z23*totalEnergy))-0.26;
313 if ( zeta1 > 0.)
314 {
315 G4double zeta2 = 0.058*log(totalEnergy/(particleMass+g2*z13*totalEnergy))-0.14;
316 zeta = zeta1/zeta2 ;
317 }
318
319 G4double z2 = Z*(Z+zeta);
320 G4double screen0 = 2.*electron_mass_c2*sqrte*bbb/(z13*pairEnergy);
321 G4double a0 = totalEnergy*residEnergy;
322 G4double a1 = pairEnergy*pairEnergy/a0;
323 G4double bet = 0.5*a1;
324 G4double xi0 = 0.25*massratio2*a1;
325 G4double del = c8/a0;
326
327 G4double rta3 = sqrt(a3);
328 G4double tmnexp = alf/(1. + rta3) + del*rta3;
329 if(tmnexp >= 1.0) return cross;
330
331 G4double tmn = log(tmnexp);
332 G4double sum = 0.;
333
334 // Gaussian integration in ln(1-ro) ( with 8 points)
335 for (G4int i=0; i<8; ++i)
336 {
337 G4double a4 = exp(tmn*xgi[i]); // a4 = (1.-asymmetry)
338 G4double a5 = a4*(2.-a4) ;
339 G4double a6 = 1.-a5 ;
340 G4double a7 = 1.+a6 ;
341 G4double a9 = 3.+a6 ;
342 G4double xi = xi0*a5 ;
343 G4double xii = 1./xi ;
344 G4double xi1 = 1.+xi ;
345 G4double screen = screen0*xi1/a5 ;
346 G4double yeu = 5.-a6+4.*bet*a7 ;
347 G4double yed = 2.*(1.+3.*bet)*log(3.+xii)-a6-a1*(2.-a6) ;
348 G4double ye1 = 1.+yeu/yed ;
349 G4double ale=log(bbb/z13*sqrt(xi1*ye1)/(1.+screen*ye1)) ;
350 G4double cre = 0.5*log(1.+2.25*z23*xi1*ye1/massratio2) ;
351 G4double be;
352
353 if (xi <= 1.e3) be = ((2.+a6)*(1.+bet)+xi*a9)*log(1.+xii)+(a5-bet)/xi1-a9;
354 else be = (3.-a6+a1*a7)/(2.*xi);
355
356 G4double fe = (ale-cre)*be;
357 if ( fe < 0.) fe = 0. ;
358
359 G4double ymu = 4.+a6 +3.*bet*a7 ;
360 G4double ymd = a7*(1.5+a1)*log(3.+xi)+1.-1.5*a6 ;
361 G4double ym1 = 1.+ymu/ymd ;
362 G4double alm_crm = log(bbb*massratio/(1.5*z23*(1.+screen*ym1)));
363 G4double a10,bm;
364 if ( xi >= 1.e-3)
365 {
366 a10 = (1.+a1)*a5 ;
367 bm = (a7*(1.+1.5*bet)-a10*xii)*log(xi1)+xi*(a5-bet)/xi1+a10;
368 } else {
369 bm = (5.-a6+bet*a9)*(xi/2.);
370 }
371
372 G4double fm = alm_crm*bm;
373 if ( fm < 0.) fm = 0. ;
374
375 sum += wgi[i]*a4*(fe+fm/massratio2);
376 }
377
378 cross = -tmn*sum*factorForCross*z2*residEnergy/(totalEnergy*pairEnergy);
379
380 return cross;
381}
382
383//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
384
387 G4double kineticEnergy,
389 G4double cutEnergy,
390 G4double maxEnergy)
391{
392 G4double cross = 0.0;
393 if (kineticEnergy <= lowestKinEnergy) { return cross; }
394
396
397 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kineticEnergy);
398 G4double tmax = std::min(maxEnergy, maxPairEnergy);
399 G4double cut = std::max(cutEnergy, minPairEnergy);
400 if (cut >= tmax) return cross;
401
402 cross = ComputeMicroscopicCrossSection (kineticEnergy, Z, cut);
403 if(tmax < kineticEnergy) {
404 cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax);
405 }
406 return cross;
407}
408
409//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
410
411void G4MuPairProductionModel::MakeSamplingTables()
412{
413 for (G4int iz=0; iz<nzdat; ++iz)
414 {
415 G4double Z = zdat[iz];
417
418 for (G4int it=0; it<ntdat; ++it) {
419
420 G4double kineticEnergy = tdat[it];
421 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kineticEnergy);
422 // G4cout << "Z= " << currentZ << " z13= " << z13
423 //<< " mE= " << maxPairEnergy << G4endl;
424 G4double xSec = 0.0 ;
425
426 if(maxPairEnergy > minPairEnergy) {
427
428 G4double y = ymin - 0.5*dy ;
429 G4double yy = ymin - dy ;
430 G4double x = exp(y);
431 G4double fac = exp(dy);
432 G4double dx = exp(yy)*(fac - 1.0);
433
434 G4double c = log(maxPairEnergy/minPairEnergy);
435
436 for (G4int i=0 ; i<nbiny; ++i) {
437 y += dy ;
438 if(c > 0.0) {
439 x *= fac;
440 dx*= fac;
441 G4double ep = minPairEnergy*exp(c*x) ;
442 xSec +=
443 ep*dx*ComputeDMicroscopicCrossSection(kineticEnergy, Z, ep);
444 }
445 ya[i] = y;
446 proba[iz][it][i] = xSec;
447 }
448
449 } else {
450 for (G4int i=0 ; i<nbiny; ++i) {
451 proba[iz][it][i] = xSec;
452 }
453 }
454
455 ya[nbiny]=ymax;
456 proba[iz][it][nbiny] = xSec;
457
458 }
459 }
460 samplingTablesAreFilled = true;
461}
462
463//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
464
465void
466G4MuPairProductionModel::SampleSecondaries(std::vector<G4DynamicParticle*>* vdp,
467 const G4MaterialCutsCouple* couple,
468 const G4DynamicParticle* aDynamicParticle,
469 G4double tmin,
470 G4double tmax)
471{
472 G4double kineticEnergy = aDynamicParticle->GetKineticEnergy();
473 G4double totalEnergy = kineticEnergy + particleMass;
474 G4double totalMomentum =
475 sqrt(kineticEnergy*(kineticEnergy + 2.0*particleMass));
476
477 G4ThreeVector partDirection = aDynamicParticle->GetMomentumDirection();
478
479 G4int it;
480 for(it=1; it<ntdat; ++it) { if(kineticEnergy <= tdat[it]) { break; } }
481 if(it == ntdat) { --it; }
482 G4double dt = log(kineticEnergy/tdat[it-1])/log(tdat[it]/tdat[it-1]);
483
484 // select randomly one element constituing the material
485 const G4Element* anElement =
486 SelectRandomAtom(kineticEnergy, dt, it, couple, tmin);
487 SetCurrentElement(anElement->GetZ());
488
489 // define interval of enegry transfer
490 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kineticEnergy);
491 G4double maxEnergy = std::min(tmax, maxPairEnergy);
492 G4double minEnergy = std::max(tmin, minPairEnergy);
493
494 if(minEnergy >= maxEnergy) { return; }
495 //G4cout << "emin= " << minEnergy << " emax= " << maxEnergy
496 // << " minPair= " << minPairEnergy << " maxpair= " << maxPairEnergy
497 // << " ymin= " << ymin << " dy= " << dy << G4endl;
498
499 G4double logmaxmin = log(maxPairEnergy/minPairEnergy);
500
501 // select bins
502 G4int iymin = 0;
503 G4int iymax = nbiny-1;
504 if( minEnergy > minPairEnergy)
505 {
506 G4double xc = log(minEnergy/minPairEnergy)/logmaxmin;
507 iymin = (G4int)((log(xc) - ymin)/dy);
508 if(iymin >= nbiny) iymin = nbiny-1;
509 else if(iymin < 0) iymin = 0;
510 xc = log(maxEnergy/minPairEnergy)/logmaxmin;
511 iymax = (G4int)((log(xc) - ymin)/dy) + 1;
512 if(iymax >= nbiny) iymax = nbiny-1;
513 else if(iymax < 0) iymax = 0;
514 }
515
516 // sample e-e+ energy, pair energy first
517 G4int iz, iy;
518
519 for(iz=1; iz<nzdat; ++iz) { if(currentZ <= zdat[iz]) { break; } }
520 if(iz == nzdat) { --iz; }
521
522 G4double dz = log(currentZ/zdat[iz-1])/log(zdat[iz]/zdat[iz-1]);
523
524 G4double pmin = InterpolatedIntegralCrossSection(dt,dz,iz,it,iymin,currentZ);
525 G4double pmax = InterpolatedIntegralCrossSection(dt,dz,iz,it,iymax,currentZ);
526
527 G4double p = pmin+G4UniformRand()*(pmax - pmin);
528
529 // interpolate sampling vector;
530 G4double p1 = pmin;
531 G4double p2 = pmin;
532 for(iy=iymin+1; iy<=iymax; ++iy) {
533 p1 = p2;
534 p2 = InterpolatedIntegralCrossSection(dt, dz, iz, it, iy, currentZ);
535 if(p <= p2) { break; }
536 }
537 // G4cout << "iy= " << iy << " iymin= " << iymin << " iymax= "
538 // << iymax << " Z= " << currentZ << G4endl;
539 G4double y = ya[iy-1] + dy*(p - p1)/(p2 - p1);
540
541 G4double PairEnergy = minPairEnergy*exp( exp(y)*logmaxmin );
542
543 if(PairEnergy < minEnergy) { PairEnergy = minEnergy; }
544 if(PairEnergy > maxEnergy) { PairEnergy = maxEnergy; }
545
546 // sample r=(E+-E-)/PairEnergy ( uniformly .....)
547 G4double rmax =
548 (1.-6.*particleMass*particleMass/(totalEnergy*(totalEnergy-PairEnergy)))
549 *sqrt(1.-minPairEnergy/PairEnergy);
550 G4double r = rmax * (-1.+2.*G4UniformRand()) ;
551
552 // compute energies from PairEnergy,r
553 G4double ElectronEnergy = (1.-r)*PairEnergy*0.5;
554 G4double PositronEnergy = PairEnergy - ElectronEnergy;
555
556 // The angle of the emitted virtual photon is sampled
557 // according to the muon bremsstrahlung model
558
559 G4double gam = totalEnergy/particleMass;
560 G4double gmax = gam*std::min(1.0, totalEnergy/PairEnergy - 1.0);
561 G4double gmax2= gmax*gmax;
562 G4double x = G4UniformRand()*gmax2/(1.0 + gmax2);
563
564 G4double theta = sqrt(x/(1.0 - x))/gam;
565 G4double sint = sin(theta);
566 G4double phi = twopi * G4UniformRand() ;
567 G4double dirx = sint*cos(phi), diry = sint*sin(phi), dirz = cos(theta) ;
568
569 G4ThreeVector gDirection(dirx, diry, dirz);
570 gDirection.rotateUz(partDirection);
571
572 // the angles of e- and e+ assumed to be the same as virtual gamma
573
574 // create G4DynamicParticle object for the particle1
575 G4DynamicParticle* aParticle1 =
576 new G4DynamicParticle(theElectron, gDirection,
577 ElectronEnergy - electron_mass_c2);
578
579 // create G4DynamicParticle object for the particle2
580 G4DynamicParticle* aParticle2 =
581 new G4DynamicParticle(thePositron, gDirection,
582 PositronEnergy - electron_mass_c2);
583
584 // primary change
585 kineticEnergy -= (ElectronEnergy + PositronEnergy);
586 fParticleChange->SetProposedKineticEnergy(kineticEnergy);
587
588 partDirection *= totalMomentum;
589 partDirection -= (aParticle1->GetMomentum() + aParticle2->GetMomentum());
590 partDirection = partDirection.unit();
591 fParticleChange->SetProposedMomentumDirection(partDirection);
592
593 // add secondary
594 vdp->push_back(aParticle1);
595 vdp->push_back(aParticle2);
596}
597
598//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
599
600const G4Element* G4MuPairProductionModel::SelectRandomAtom(
601 G4double kinEnergy, G4double dt, G4int it,
602 const G4MaterialCutsCouple* couple, G4double tmin)
603{
604 // select randomly 1 element within the material
605
606 const G4Material* material = couple->GetMaterial();
607 size_t nElements = material->GetNumberOfElements();
608 const G4ElementVector* theElementVector = material->GetElementVector();
609 if (nElements == 1) { return (*theElementVector)[0]; }
610
611 if(nElements > nmaxElements) {
612 nmaxElements = nElements;
613 partialSum.resize(nmaxElements);
614 }
615
616 const G4double* theAtomNumDensityVector=material->GetAtomicNumDensityVector();
617
618 G4double sum = 0.0;
619 G4double dl;
620
621 size_t i;
622 for (i=0; i<nElements; ++i) {
623 G4double Z = ((*theElementVector)[i])->GetZ();
625 G4double maxPairEnergy = MaxSecondaryEnergy(particle,kinEnergy);
626 G4double minEnergy = std::max(tmin, minPairEnergy);
627 dl = 0.0;
628 if(minEnergy < maxPairEnergy) {
629
630 G4int iz;
631 for(iz=1; iz<nzdat; ++iz) {if(Z <= zdat[iz]) { break; } }
632 if(iz == nzdat) { --iz; }
633 G4double dz = log(Z/zdat[iz-1])/log(zdat[iz]/zdat[iz-1]);
634
635 G4double sigcut;
636 if(minEnergy <= minPairEnergy)
637 sigcut = 0.;
638 else
639 {
640 G4double xc = log(minEnergy/minPairEnergy)/log(maxPairEnergy/minPairEnergy);
641 G4int iy = (G4int)((log(xc) - ymin)/dy);
642 if(iy < 0) { iy = 0; }
643 if(iy >= nbiny) { iy = nbiny-1; }
644 sigcut = InterpolatedIntegralCrossSection(dt,dz,iz,it,iy, Z);
645 }
646
647 G4double sigtot = InterpolatedIntegralCrossSection(dt,dz,iz,it,nbiny,Z);
648 dl = (sigtot - sigcut)*theAtomNumDensityVector[i];
649 }
650 // protection
651 if(dl < 0.0) { dl = 0.0; }
652 sum += dl;
653 partialSum[i] = sum;
654 }
655
656 G4double rval = G4UniformRand()*sum;
657 for (i=0; i<nElements; ++i) {
658 if(rval<=partialSum[i]) { return (*theElementVector)[i]; }
659 }
660
661 return (*theElementVector)[nElements - 1];
662
663}
664
665//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
666
667
std::vector< G4Element * > G4ElementVector
G4fissionEvent * fe
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4double GetZ() const
Definition: G4Element.hh:131
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:215
G4double ComputeMicroscopicCrossSection(G4double tkin, G4double Z, G4double cut)
void SetParticle(const G4ParticleDefinition *)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4double ComputMuPairLoss(G4double Z, G4double tkin, G4double cut, G4double tmax)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual G4double ComputeDMicroscopicCrossSection(G4double tkin, G4double Z, G4double pairEnergy)
virtual G4double MinEnergyCut(const G4ParticleDefinition *, const G4MaterialCutsCouple *)
const G4ParticleDefinition * particle
G4MuPairProductionModel(const G4ParticleDefinition *p=0, const G4String &nam="muPairProd")
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy)
virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kineticEnergy)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy)
static G4NistManager * Instance()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
static G4Positron * Positron()
Definition: G4Positron.cc:94
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:592
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:95