Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4SphericalSurface.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// ----------------------------------------------------------------------
30// Class G4SphericalSurface
31//
32// Class description:
33//
34// Definition of a spherical surface.
35
36// The code for G4SphericalSurface has been derived from the original
37// implementation in the "Gismo" package.
38//
39// Authors: L.Lim, A.Breakstone.
40// Adaptation: J.Sulkimo, P.Urban.
41// Revisions by: L.Broglia, G.Cosmo.
42// ----------------------------------------------------------------------
43#ifndef __G4SpheShell_H
44#define __G4SpheShell_H
45
46#include "G4Surface.hh"
47#include "G4ThreeMat.hh"
48
50{
51
52 public: // with description
53
55 // Default constructor.
56
58 const G4Vector3D& xhat, const G4Vector3D& zhat,
59 G4double r,
60 G4double ph1, G4double ph2,
61 G4double th1, G4double th2 );
62 // Normal constructor:
63 // first argument is the origin of the G4SphericalSurface
64 // second argument is the axis of the G4SphericalSurface
65 // which defines azimuthal angle equals zero
66 // third argument is the axis of the G4SphericalSurface
67 // which defines polar angle equals zero
68 // fourth argument is the radius of the G4SphericalSurface
69 // fifth argument is the lower azimuthal angle limit of the surface
70 // sixth argument is the upper azimuthal angle limit of the surface
71 // seventh argument is the lower polar angle limit of the surface
72 // eigth argument is the upper polar angle limit of the surface
73
74 virtual ~G4SphericalSurface();
75 // Destructor.
76
78 // Equality operator.
79
80 inline G4String GetEntityType() const;
81 // Returns the type identifier.
82
83 virtual const char* NameOf() const;
84 // Returns the class name.
85
86 virtual void PrintOn( std::ostream& os = G4cout ) const;
87 // Printing function, streaming surface's attributes.
88
89 G4int Intersect(const G4Ray&);
90 // Returns the distance along a Ray (straight line with G4Vector3D) to
91 // leave or enter a G4SphericalSurface.
92 // If the G4Vector3D of the Ray is opposite to that of the Normal to
93 // the G4SphericalSurface at the intersection point, it will not leave the
94 // G4SphericalSurface.
95 // Similarly, if the G4Vector3D of the Ray is along that of the Normal
96 // to the G4SphericalSurface at the intersection point, it will not enter
97 // the G4SphericalSurface.
98 // This method is called by all finite shapes sub-classed to
99 // G4SphericalSurface.
100 // A negative result means no intersection.
101 // If no valid intersection point is found, set the distance
102 // and intersection point to large numbers.
103
104 void CalcBBox();
105 // Computes the bounding-box.
106
107 inline void Comp(G4Vector3D& v, G4Point3D& min , G4Point3D& max);
108 // Compares the x,y and z values of v and min
109 // versus v and max. min/max-values are replaced if
110 // greater/smaller than v-values.
111
112 virtual G4double HowNear( const G4Vector3D& x ) const;
113 // Returns the distance from a point to a G4SphericalSurface
114 // The point x is the (input) argument.
115 // The distance is positive if the point is Inside, negative if it
116 // is outside
117
118 virtual G4Vector3D SurfaceNormal( const G4Point3D& p ) const;
119 // Returns the Normal unit vector to the G4SphericalSurface at a point p
120 // on (or nearly on) the G4SphericalSurface.
121
122 virtual G4int Inside( const G4Vector3D& x ) const;
123 // Returns 1 if the point x is Inside the G4SphericalSurface, 0 otherwise.
124
125 virtual G4int WithinBoundary( const G4Vector3D& x ) const;
126 // Returns 1 if the point x is within the boundary, 0 otherwise.
127
128 virtual G4double Scale() const;
129 // Returns the radius, unless it is zero, in which case it
130 // returns 1. Used for Scale-invariant tests of surface thickness.
131
132 virtual G4double Area() const;
133 // Calculates the area of a G4SphericalSurface.
134
135 virtual void resize( G4double r, G4double ph1, G4double ph2,
136 G4double th1, G4double th2);
137 // Resizes the G4SphericalSurface to new radius and angle limits.
138 // first argument is the radius of the G4SphericalSurface
139 // second argument is the lower azimuthal angle limit of the surface
140 // third argument is the upper azimuthal angle limit of the surface
141 // fourth argument is the lower polar angle limit of the surface
142 // fifth argument is the upper polar angle limit of the surface
143
144 inline G4Vector3D GetXAxis() const;
145 inline G4Vector3D GetZAxis() const;
146 inline G4double GetRadius() const;
147 inline G4double GetPhi1() const;
148 inline G4double GetPhi2() const;
149 inline G4double GetTheta1() const;
150 inline G4double GetTheta2() const;
151 // Accessors methodss to return the axes, radius, and angles
152 // of the G4SphericalSurface.
153
154 public: // without description
155
156 virtual G4Vector3D Normal( const G4Vector3D& p ) const;
157 // Returns the Normal unit vector as for SurfaceNormal().
158
159/*
160 virtual G4double distanceAlongRay( G4int which_way, const G4Ray* ry,
161 G4ThreeVec& p ) const;
162 // Returns the distance along a Ray to enter or leave a G4SphericalSurface.
163 // The first (input) argument is +1 to leave or -1 to enter
164 // The second (input) argument is a pointer to the Ray
165 // The third (output) argument returns the intersection point.
166
167 virtual G4double distanceAlongHelix( G4int which_way, const Helix* hx,
168 G4ThreeVec& p ) const;
169 // Returns the distance along a Helix to enter or leave a G4SphericalSurface.
170 // The first (input) argument is +1 to leave or -1 to enter
171 // The second (input) argument is a pointer to the Helix
172 // The third (output) argument returns the intersection point.
173
174 virtual G4Vector3D Normal( const G4Point3D& p ) const;
175 // Returns the Normal unit vector to a G4SphericalSurface at a point p
176 // on (or nearly on) the G4SphericalSurface.
177
178 virtual void rotate( G4double alpha, G4double beta,
179 G4double gamma, G4ThreeMat& m, G4int inverse );
180 // Rotates the G4SphericalSurface (angles are assumed to be given in
181 // radians), arguments:
182 // - first about global x_axis by angle alpha,
183 // - second about global y-axis by angle beta,
184 // - third about global z_axis by angle gamma,
185 // - fourth (output) argument gives the calculated rotation matrix,
186 // - fifth (input) argument is an integer flag which if
187 // non-zero reverses the order of the rotations.
188
189 virtual void rotate( G4double alpha, G4double beta,
190 G4double gamma, G4int inverse );
191 // Rotates the G4SphericalSurface (angles are assumed to be given in
192 // radians), arguments:
193 // - first about global x_axis by angle alpha,
194 // - second about global y-axis by angle beta,
195 // - third about global z_axis by angle gamma,
196 // - fourth (input) argument is an integer flag which if
197 // non-zero reverses the order of the rotations.
198*/
199
200 protected: // with description
201
203 // Direction (unit vector) of axis of G4SphericalSurface
204 // which defines azimuthal angle of zero.
205
207 // Direction (unit vector) of axis of G4SphericalSurface
208 // which defines polar angle of zero.
209
211 // Radius of G4SphericalSurface.
212
214 // Lower azimuthal angle limit of G4SphericalSurface
215 // (in radians). Allowed range: 0 <= phi_1 < 2*PI.
216
218 // Upper azimuthal angle limit of G4SphericalSurface
219 // (in radians). Allowed range: phi_1 < phi_2 <= phi_1 + 2*PI
220
222 // Lower polar angle limit of G4SphericalSurface
223 // (in radians). Allowed range: 0 <= theta_1 < PI.
224
226 // Upper polar angle limit of G4SphericalSurface
227 // (in radians). Allowed range: theta_1 < theta_2 <= theta_1 + PI.
228
229 private:
230
232 G4SphericalSurface& operator=(const G4SphericalSurface&);
233 // Private copy constructor and assignment operator.
234
235 // virtual G4double gropeAlongHelix( const Helix* hx ) const;
236 // Private function to use a crude technique to find the intersection
237 // of a Helix with a G4SphericalSurface. It returns the turning angle
238 // along the Helix at which the intersection occurs or -1.0 if no
239 // intersection point is found. The argument to the call is the pointer
240 // to the Helix.
241
242};
243
244#include "G4SphericalSurface.icc"
245
246#endif
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4DLLIMPORT std::ostream G4cout
Definition: G4Ray.hh:49
void Comp(G4Vector3D &v, G4Point3D &min, G4Point3D &max)
G4int operator==(const G4SphericalSurface &s)
virtual G4int Inside(const G4Vector3D &x) const
virtual G4double Scale() const
G4double GetRadius() const
virtual G4Vector3D Normal(const G4Vector3D &p) const
G4double GetPhi1() const
G4String GetEntityType() const
G4Vector3D GetZAxis() const
virtual void PrintOn(std::ostream &os=G4cout) const
G4double GetTheta2() const
G4double GetPhi2() const
virtual G4int WithinBoundary(const G4Vector3D &x) const
virtual const char * NameOf() const
virtual void resize(G4double r, G4double ph1, G4double ph2, G4double th1, G4double th2)
G4int Intersect(const G4Ray &)
virtual G4double HowNear(const G4Vector3D &x) const
virtual G4double Area() const
virtual G4Vector3D SurfaceNormal(const G4Point3D &p) const
G4double GetTheta1() const
G4Vector3D GetXAxis() const