Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4HESigmaMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27
28// G4 Process: Gheisha High Energy Collision model.
29// This includes the high energy cascading model, the two-body-resonance model
30// and the low energy two-body model. Not included are the low energy stuff
31// like nuclear reactions, nuclear fission without any cascading and all
32// processes for particles at rest.
33// First work done by J.L.Chuma and F.W.Jones, TRIUMF, June 96.
34// H. Fesefeldt, RWTH-Aachen, 23-October-1996
35
37#include "globals.hh"
38#include "G4ios.hh"
40#include "G4SystemOfUnits.hh"
41
43 : G4HEInelastic(name)
44{
45 vecLength = 0;
46 theMinEnergy = 20*GeV;
47 theMaxEnergy = 10*TeV;
48 MAXPART = 2048;
49 verboseLevel = 0;
50 G4cout << "WARNING: model G4HESigmaMinusInelastic is being deprecated and will\n"
51 << "disappear in Geant4 version 10.0" << G4endl;
52}
53
54
55void G4HESigmaMinusInelastic::ModelDescription(std::ostream& outFile) const
56{
57 outFile << "G4HESigmaMinusInelastic is one of the High Energy Parameterized\n"
58 << "(HEP) models used to implement inelastic Sigma- scattering\n"
59 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
60 << "code of H. Fesefeldt. It divides the initial collision\n"
61 << "products into backward- and forward-going clusters which are\n"
62 << "then decayed into final state hadrons. The model does not\n"
63 << "conserve energy on an event-by-event basis. It may be\n"
64 << "applied to sigmas with initial energies above 20 GeV.\n";
65}
66
67
70 G4Nucleus& targetNucleus)
71{
72 G4HEVector* pv = new G4HEVector[MAXPART];
73 const G4HadProjectile* aParticle = &aTrack;
74 const G4double A = targetNucleus.GetA_asInt();
75 const G4double Z = targetNucleus.GetZ_asInt();
76 G4HEVector incidentParticle(aParticle);
77
78 G4double atomicNumber = Z;
79 G4double atomicWeight = A;
80
81 G4int incidentCode = incidentParticle.getCode();
82 G4double incidentMass = incidentParticle.getMass();
83 G4double incidentTotalEnergy = incidentParticle.getEnergy();
84
85 // G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
86 // DHW 19 May 2011: variable set but not used
87
88 G4double incidentKineticEnergy = incidentTotalEnergy - incidentMass;
89
90 if (incidentKineticEnergy < 1.)
91 G4cout << "GHESigmaMinusInelastic: incident energy < 1 GeV" << G4endl;
92
93 if (verboseLevel > 1) {
94 G4cout << "G4HESigmaMinusInelastic::ApplyYourself" << G4endl;
95 G4cout << "incident particle " << incidentParticle.getName()
96 << "mass " << incidentMass
97 << "kinetic energy " << incidentKineticEnergy
98 << G4endl;
99 G4cout << "target material with (A,Z) = ("
100 << atomicWeight << "," << atomicNumber << ")" << G4endl;
101 }
102
103 G4double inelasticity = NuclearInelasticity(incidentKineticEnergy,
104 atomicWeight, atomicNumber);
105 if (verboseLevel > 1)
106 G4cout << "nuclear inelasticity = " << inelasticity << G4endl;
107
108 incidentKineticEnergy -= inelasticity;
109
110 G4double excitationEnergyGNP = 0.;
111 G4double excitationEnergyDTA = 0.;
112
113 G4double excitation = NuclearExcitation(incidentKineticEnergy,
114 atomicWeight, atomicNumber,
115 excitationEnergyGNP,
116 excitationEnergyDTA);
117 if (verboseLevel > 1)
118 G4cout << "nuclear excitation = " << excitation << excitationEnergyGNP
119 << excitationEnergyDTA << G4endl;
120
121 incidentKineticEnergy -= excitation;
122 incidentTotalEnergy = incidentKineticEnergy + incidentMass;
123 // incidentTotalMomentum = std::sqrt( (incidentTotalEnergy-incidentMass)
124 // *(incidentTotalEnergy+incidentMass));
125 // DHW 19 May 2011: variable set but not used
126
127 G4HEVector targetParticle;
128 if (G4UniformRand() < atomicNumber/atomicWeight) {
129 targetParticle.setDefinition("Proton");
130 } else {
131 targetParticle.setDefinition("Neutron");
132 }
133
134 G4double targetMass = targetParticle.getMass();
135 G4double centerOfMassEnergy = std::sqrt(incidentMass*incidentMass
136 + targetMass*targetMass
137 + 2.0*targetMass*incidentTotalEnergy);
138 G4double availableEnergy = centerOfMassEnergy - targetMass - incidentMass;
139
140 G4bool inElastic = true;
141 vecLength = 0;
142
143 if (verboseLevel > 1)
144 G4cout << "ApplyYourself: CallFirstIntInCascade for particle "
145 << incidentCode << G4endl;
146
147 G4bool successful = false;
148
149 FirstIntInCasSigmaMinus(inElastic, availableEnergy, pv, vecLength,
150 incidentParticle, targetParticle, atomicWeight);
151
152 if (verboseLevel > 1)
153 G4cout << "ApplyYourself::StrangeParticlePairProduction" << G4endl;
154
155 if ((vecLength > 0) && (availableEnergy > 1.))
156 StrangeParticlePairProduction(availableEnergy, centerOfMassEnergy,
157 pv, vecLength,
158 incidentParticle, targetParticle);
159
160 HighEnergyCascading(successful, pv, vecLength,
161 excitationEnergyGNP, excitationEnergyDTA,
162 incidentParticle, targetParticle,
163 atomicWeight, atomicNumber);
164 if (!successful)
166 excitationEnergyGNP, excitationEnergyDTA,
167 incidentParticle, targetParticle,
168 atomicWeight, atomicNumber);
169 if (!successful)
170 MediumEnergyCascading(successful, pv, vecLength,
171 excitationEnergyGNP, excitationEnergyDTA,
172 incidentParticle, targetParticle,
173 atomicWeight, atomicNumber);
174
175 if (!successful)
177 excitationEnergyGNP, excitationEnergyDTA,
178 incidentParticle, targetParticle,
179 atomicWeight, atomicNumber);
180 if (!successful)
181 QuasiElasticScattering(successful, pv, vecLength,
182 excitationEnergyGNP, excitationEnergyDTA,
183 incidentParticle, targetParticle,
184 atomicWeight, atomicNumber);
185 if (!successful)
186 ElasticScattering(successful, pv, vecLength,
187 incidentParticle,
188 atomicWeight, atomicNumber);
189
190 if (!successful)
191 G4cout << "GHEInelasticInteraction::ApplyYourself fails to produce final state particles"
192 << G4endl;
193
195 delete [] pv;
197 return &theParticleChange;
198}
199
200
201void
203 const G4double availableEnergy,
204 G4HEVector pv[],
205 G4int& vecLen,
206 const G4HEVector& incidentParticle,
207 const G4HEVector& targetParticle,
208 const G4double atomicWeight)
209
210// Sigma- undergoes interaction with nucleon within a nucleus. Check if it is
211// energetically possible to produce pions/kaons. In not, assume nuclear excitation
212// occurs and input particle is degraded in energy. No other particles are produced.
213// If reaction is possible, find the correct number of pions/protons/neutrons
214// produced using an interpolation to multiplicity data. Replace some pions or
215// protons/neutrons by kaons or strange baryons according to the average
216// multiplicity per inelastic reaction.
217{
218 static const G4double expxu = 82.; // upper bound for arg. of exp
219 static const G4double expxl = -expxu; // lower bound for arg. of exp
220
221 static const G4double protb = 0.7;
222 static const G4double neutb = 0.7;
223 static const G4double c = 1.25;
224
225 static const G4int numMul = 1200;
226 static const G4int numSec = 60;
227
229 G4int protonCode = Proton.getCode();
230
231 G4int targetCode = targetParticle.getCode();
232 G4double incidentTotalMomentum = incidentParticle.getTotalMomentum();
233
234 static G4bool first = true;
235 static G4double protmul[numMul], protnorm[numSec]; // proton constants
236 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
237
238 // misc. local variables
239 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
240
241 G4int i, counter, nt, npos, nneg, nzero;
242
243 if (first) { // computation of normalization constants will only be done once
244 first = false;
245 for( i=0; i<numMul; i++ )protmul[i] = 0.0;
246 for( i=0; i<numSec; i++ )protnorm[i] = 0.0;
247 counter = -1;
248 for (npos = 0; npos < (numSec/3); npos++) {
249 for (nneg = std::max(0,npos-1); nneg <= (npos+1); nneg++) {
250 for (nzero = 0; nzero < numSec/3; nzero++) {
251 if (++counter < numMul) {
252 nt = npos+nneg+nzero;
253 if ((nt > 0) && (nt<=numSec) ) {
254 protmul[counter] = pmltpc(npos,nneg,nzero,nt,protb,c);
255 protnorm[nt-1] += protmul[counter];
256 }
257 }
258 }
259 }
260 }
261
262 for (i = 0; i < numMul; i++) neutmul[i] = 0.0;
263 for (i = 0; i < numSec; i++) neutnorm[i] = 0.0;
264 counter = -1;
265 for (npos = 0; npos < numSec/3; npos++) {
266 for (nneg = npos; nneg <= (npos+2); nneg++) {
267 for (nzero = 0; nzero < numSec/3; nzero++) {
268 if (++counter < numMul) {
269 nt = npos+nneg+nzero;
270 if ((nt>0) && (nt<=numSec) ) {
271 neutmul[counter] = pmltpc(npos,nneg,nzero,nt,neutb,c);
272 neutnorm[nt-1] += neutmul[counter];
273 }
274 }
275 }
276 }
277 }
278 for (i = 0; i < numSec; i++) {
279 if (protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
280 if (neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
281 }
282 } // end of initialization
283
284 pv[0] = incidentParticle; // initialize the first two places
285 pv[1] = targetParticle; // the same as beam and target
286 vecLen = 2;
287
288 if (!inElastic) { // quasi-elastic scattering, no pions produced
289 G4double cech[] = {0.50, 0.45, 0.40, 0.35, 0.30, 0.25, 0.06, 0.04, 0.005, 0.};
290 G4int iplab = G4int( std::min( 9.0, incidentTotalMomentum*2.5 ) );
291 if (G4UniformRand() < cech[iplab]/std::pow(atomicWeight,0.42) ) {
292 G4double ran = G4UniformRand();
293 if (targetCode == neutronCode) {
294 pv[0] = Neutron;
295 pv[1] = SigmaMinus;
296 } else {
297 if (ran < 0.2) {
298 pv[0] = SigmaZero;
299 pv[1] = Neutron;
300 } else if (ran < 0.4) {
301 pv[0] = Lambda;
302 pv[1] = Neutron;
303 } else if (ran < 0.6) {
304 pv[0] = Proton;
305 pv[1] = SigmaMinus;
306 } else if (ran < 0.8) {
307 pv[0] = Neutron;
308 pv[1] = SigmaZero;
309 } else {
310 pv[0] = Neutron;
311 pv[1] = Lambda;
312 }
313 }
314 }
315 return;
316
317 } else if (availableEnergy <= PionPlus.getMass()) return;
318
319 // inelastic scattering
320 npos = 0, nneg = 0, nzero = 0;
321
322 // number of total particles vs. centre of mass Energy - 2*proton mass
323 G4double aleab = std::log(availableEnergy);
324 G4double n = 3.62567+aleab*(0.665843+aleab*(0.336514
325 + aleab*(0.117712+0.0136912*aleab))) - 2.0;
326
327 // normalization constant for kno-distribution.
328 // calculate first the sum of all constants, check for numerical problems.
329 G4double test, dum, anpn = 0.0;
330
331 for (nt = 1; nt <= numSec; nt++) {
332 test = std::exp(std::min(expxu, std::max(expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
333 dum = pi*nt/(2.0*n*n);
334 if (std::fabs(dum) < 1.0) {
335 if (test >= 1.0e-10) anpn += dum*test;
336 } else {
337 anpn += dum*test;
338 }
339 }
340
341 G4double ran = G4UniformRand();
342 G4double excs = 0.0;
343 if (targetCode == protonCode) {
344 counter = -1;
345 for (npos=0; npos<numSec/3; npos++) {
346 for (nneg=std::max(0,npos-1); nneg<=(npos+1); nneg++) {
347 for (nzero=0; nzero<numSec/3; nzero++) {
348 if (++counter < numMul) {
349 nt = npos+nneg+nzero;
350 if ( (nt>0) && (nt<=numSec) ) {
351 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
352 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
353 if (std::fabs(dum) < 1.0) {
354 if( test >= 1.0e-10 )excs += dum*test;
355 } else {
356 excs += dum*test;
357 }
358 if (ran < excs) goto outOfLoop; //----------------------->
359 }
360 }
361 }
362 }
363 }
364
365 // 3 previous loops continued to the end
366 inElastic = false; // quasi-elastic scattering
367 return;
368
369 } else { // target must be a neutron
370 counter = -1;
371 for (npos=0; npos<numSec/3; npos++) {
372 for (nneg=npos; nneg<=(npos+2); nneg++) {
373 for (nzero=0; nzero<numSec/3; nzero++) {
374 if (++counter < numMul) {
375 nt = npos+nneg+nzero;
376 if ( (nt>=1) && (nt<=numSec) ) {
377 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
378 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
379 if (std::fabs(dum) < 1.0) {
380 if( test >= 1.0e-10 )excs += dum*test;
381 } else {
382 excs += dum*test;
383 }
384 if (ran < excs) goto outOfLoop; // -------------------->
385 }
386 }
387 }
388 }
389 }
390 // 3 previous loops continued to the end
391
392 inElastic = false; // quasi-elastic scattering.
393 return;
394 }
395
396 outOfLoop: // <-------------------------------------------
397
398 ran = G4UniformRand();
399 if (targetCode == neutronCode) {
400 if( npos == nneg)
401 {
402 }
403 else if (npos == (nneg-1))
404 {
405 if( ran < 0.25)
406 {
407 pv[0] = SigmaZero;
408 }
409 else if (ran < 0.5)
410 {
411 pv[0] = Lambda;
412 }
413 else
414 {
415 pv[1] = Proton;
416 }
417 }
418 else
419 {
420 if(ran < 0.5)
421 {
422 pv[0] = SigmaZero;
423 pv[1] = Proton;
424 }
425 else
426 {
427 pv[0] = Lambda;
428 pv[1] = Proton;
429 }
430 }
431 } else {
432 if (npos == nneg)
433 {
434 if (ran < 0.5)
435 {
436 }
437 else if (ran < 0.75)
438 {
439 pv[0] = SigmaZero;
440 pv[1] = Neutron;
441 }
442 else
443 {
444 pv[0] = Lambda;
445 pv[1] = Neutron;
446 }
447 }
448 else if (npos == (nneg+1))
449 {
450 pv[1] = Neutron;
451 }
452 else
453 {
454 if (ran < 0.5)
455 {
456 pv[0] = SigmaZero;
457 }
458 else
459 {
460 pv[0] = Lambda;
461 }
462 }
463 }
464
465 nt = npos + nneg + nzero;
466 while (nt > 0) {
467 G4double rnd = G4UniformRand();
468 if (rnd < (G4double)npos/nt) {
469 if (npos > 0) {
470 pv[vecLen++] = PionPlus;
471 npos--;
472 }
473 } else if (rnd < (G4double)(npos+nneg)/nt) {
474 if (nneg > 0) {
475 pv[vecLen++] = PionMinus;
476 nneg--;
477 }
478 } else {
479 if (nzero > 0) {
480 pv[vecLen++] = PionZero;
481 nzero--;
482 }
483 }
484 nt = npos + nneg + nzero;
485 }
486
487 if (verboseLevel > 1) {
488 G4cout << "Particles produced: " ;
489 G4cout << pv[0].getCode() << " " ;
490 G4cout << pv[1].getCode() << " " ;
491 for (i = 2; i < vecLen; i++) G4cout << pv[i].getCode() << " " ;
492 G4cout << G4endl;
493 }
494
495 return;
496}
497
498
499
500
501
502
503
504
505
506
@ stopAndKill
@ neutronCode
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
G4HEVector PionPlus
G4HEVector SigmaZero
G4double pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HEVector Lambda
void MediumEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
void ElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, G4double atomicWeight, G4double atomicNumber)
void QuasiElasticScattering(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector SigmaMinus
G4HEVector Neutron
void FillParticleChange(G4HEVector pv[], G4int aVecLength)
G4HEVector PionMinus
void HighEnergyClusterProduction(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HEVector PionZero
G4double NuclearExcitation(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber, G4double &excitationEnergyCascade, G4double &excitationEnergyEvaporation)
G4HEVector Proton
void MediumEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4double NuclearInelasticity(G4double incidentKineticEnergy, G4double atomicWeight, G4double atomicNumber)
void StrangeParticlePairProduction(const G4double availableEnergy, const G4double centerOfMassEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle)
void HighEnergyCascading(G4bool &successful, G4HEVector pv[], G4int &vecLen, G4double &excitationEnergyGNP, G4double &excitationEnergyDTA, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, G4double atomicWeight, G4double atomicNumber)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription(std::ostream &) const
void FirstIntInCasSigmaMinus(G4bool &inElastic, const G4double availableEnergy, G4HEVector pv[], G4int &vecLen, const G4HEVector &incidentParticle, const G4HEVector &targetParticle, const G4double atomicWeight)
G4HESigmaMinusInelastic(const G4String &name="G4HESigmaMinusInelastic")
G4double getEnergy() const
Definition: G4HEVector.cc:313
G4double getMass() const
Definition: G4HEVector.cc:361
G4int getCode() const
Definition: G4HEVector.cc:426
G4double getTotalMomentum() const
Definition: G4HEVector.cc:166
G4String getName() const
Definition: G4HEVector.cc:431
void setDefinition(G4String name)
Definition: G4HEVector.cc:812
void SetStatusChange(G4HadFinalStateStatus aS)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115