Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4JTPolynomialSolver.hh
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29// Class description:
30//
31// G4JTPolynomialSolver implements the Jenkins-Traub algorithm
32// for real polynomial root finding.
33// The solver returns -1, if the leading coefficient is zero,
34// the number of roots found, otherwise.
35//
36// ----------------------------- INPUT --------------------------------
37//
38// op - double precision vector of coefficients in order of
39// decreasing powers
40// degree - integer degree of polynomial
41//
42// ----------------------------- OUTPUT -------------------------------
43//
44// zeror,zeroi - double precision vectors of the
45// real and imaginary parts of the zeros
46//
47// ---------------------------- EXAMPLE -------------------------------
48//
49// G4JTPolynomialSolver trapEq ;
50// G4double coef[8] ;
51// G4double zr[7] , zi[7] ;
52// G4int num = trapEq.FindRoots(coef,7,zr,zi);
53
54// ---------------------------- HISTORY -------------------------------
55//
56// Translated from original TOMS493 Fortran77 routine (ANSI C, by C.Bond).
57// Translated to C++ and adapted to use STL vectors,
58// by Oliver Link (Oliver.Link@cern.ch)
59//
60// --------------------------------------------------------------------
61
62#ifndef G4JTPOLYNOMIALSOLVER_HH
63#define G4JTPOLYNOMIALSOLVER_HH
64
65#include <cmath>
66#include <vector>
67
68#include "globals.hh"
69
71{
72
73 public:
74
77
78 G4int FindRoots(G4double *op, G4int degree,
79 G4double *zeror, G4double *zeroi);
80
81 private:
82
83 std::vector<G4double> p;
84 std::vector<G4double> qp;
85 std::vector<G4double> k;
86 std::vector<G4double> qk;
87 std::vector<G4double> svk;
88
89 G4double sr;
90 G4double si;
91 G4double u,v;
92 G4double a,b,c,d;
93 G4double a1,a2,a3,a6,a7;
94 G4double e,f,g,h;
95 G4double szr,szi;
96 G4double lzr,lzi;
97 G4int n,nmi;
98
99 /* The following statements set machine constants */
100
101 static const G4double base;
102 static const G4double eta;
103 static const G4double infin;
104 static const G4double smalno;
105 static const G4double are;
106 static const G4double mre;
107 static const G4double lo;
108
109 void Quadratic(G4double a,G4double b1,G4double c,
110 G4double *sr,G4double *si, G4double *lr,G4double *li);
111 void ComputeFixedShiftPolynomial(G4int l2, G4int *nz);
112 void QuadraticPolynomialIteration(G4double *uu,G4double *vv,G4int *nz);
113 void RealPolynomialIteration(G4double *sss, G4int *nz, G4int *iflag);
114 void ComputeScalarFactors(G4int *type);
115 void ComputeNextPolynomial(G4int *type);
116 void ComputeNewEstimate(G4int type,G4double *uu,G4double *vv);
117 void QuadraticSyntheticDivision(G4int n, G4double *u, G4double *v,
118 std::vector<G4double> &p,
119 std::vector<G4double> &q,
120 G4double *a, G4double *b);
121};
122
123#endif
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4int FindRoots(G4double *op, G4int degree, G4double *zeror, G4double *zeroi)