Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4PenelopeRayleighModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Author: Luciano Pandola
28//
29// History:
30// --------
31// 03 Dec 2009 L Pandola First implementation
32// 25 May 2011 L.Pandola Renamed (make v2008 as default Penelope)
33// 19 Sep 2013 L.Pandola Migration to MT
34//
35
38#include "G4SystemOfUnits.hh"
43#include "G4DynamicParticle.hh"
44#include "G4PhysicsTable.hh"
45#include "G4ElementTable.hh"
46#include "G4Element.hh"
48#include "G4AutoLock.hh"
49#include "G4Exp.hh"
50
51//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
52
53const G4int G4PenelopeRayleighModel::fMaxZ;
54G4PhysicsFreeVector* G4PenelopeRayleighModel::fLogAtomicCrossSection[] = {nullptr};
55G4PhysicsFreeVector* G4PenelopeRayleighModel::fAtomicFormFactor[] = {nullptr};
56
57//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
58
60 const G4String& nam)
61 :G4VEmModel(nam),fParticleChange(nullptr),fParticle(nullptr),
62 fLogFormFactorTable(nullptr),fPMaxTable(nullptr),fSamplingTable(nullptr),
63 fIsInitialised(false),fLocalTable(false)
64{
65 fIntrinsicLowEnergyLimit = 100.0*eV;
66 fIntrinsicHighEnergyLimit = 100.0*GeV;
67 // SetLowEnergyLimit(fIntrinsicLowEnergyLimit);
68 SetHighEnergyLimit(fIntrinsicHighEnergyLimit);
69
70 if (part)
71 SetParticle(part);
72
73 //
74 fVerboseLevel= 0;
75 // Verbosity scale:
76 // 0 = nothing
77 // 1 = warning for energy non-conservation
78 // 2 = details of energy budget
79 // 3 = calculation of cross sections, file openings, sampling of atoms
80 // 4 = entering in methods
81
82 //build the energy grid. It is the same for all materials
83 G4double logenergy = G4Log(fIntrinsicLowEnergyLimit/2.);
84 G4double logmaxenergy = G4Log(1.5*fIntrinsicHighEnergyLimit);
85 //finer grid below 160 keV
86 G4double logtransitionenergy = G4Log(160*keV);
87 G4double logfactor1 = G4Log(10.)/250.;
88 G4double logfactor2 = logfactor1*10;
89 fLogEnergyGridPMax.push_back(logenergy);
90 do{
91 if (logenergy < logtransitionenergy)
92 logenergy += logfactor1;
93 else
94 logenergy += logfactor2;
95 fLogEnergyGridPMax.push_back(logenergy);
96 }while (logenergy < logmaxenergy);
97}
98
99//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100
102{
103 if (IsMaster() || fLocalTable)
104 {
105
106 for(G4int i=0; i<=fMaxZ; ++i)
107 {
108 if(fLogAtomicCrossSection[i])
109 {
110 delete fLogAtomicCrossSection[i];
111 fLogAtomicCrossSection[i] = nullptr;
112 }
113 if(fAtomicFormFactor[i])
114 {
115 delete fAtomicFormFactor[i];
116 fAtomicFormFactor[i] = nullptr;
117 }
118 }
119 ClearTables();
120 }
121}
122
123//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
124void G4PenelopeRayleighModel::ClearTables()
125{
126 if (fLogFormFactorTable)
127 {
128 for (auto& item : (*fLogFormFactorTable))
129 if (item.second) delete item.second;
130 delete fLogFormFactorTable;
131 fLogFormFactorTable = nullptr; //zero explicitly
132 }
133 if (fPMaxTable)
134 {
135 for (auto& item : (*fPMaxTable))
136 if (item.second) delete item.second;
137 delete fPMaxTable;
138 fPMaxTable = nullptr; //zero explicitly
139 }
140 if (fSamplingTable)
141 {
142 for (auto& item : (*fSamplingTable))
143 if (item.second) delete item.second;
144 delete fSamplingTable;
145 fSamplingTable = nullptr; //zero explicitly
146 }
147 return;
148}
149
150//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
151
153 const G4DataVector& )
154{
155 if (fVerboseLevel > 3)
156 G4cout << "Calling G4PenelopeRayleighModel::Initialise()" << G4endl;
157
158 SetParticle(part);
159
160 //Only the master model creates/fills/destroys the tables
161 if (IsMaster() && part == fParticle)
162 {
163 //clear tables depending on materials, not the atomic ones
164 ClearTables();
165
166 if (fVerboseLevel > 3)
167 G4cout << "Calling G4PenelopeRayleighModel::Initialise() [master]" << G4endl;
168
169 //create new tables
170 if (!fLogFormFactorTable)
171 fLogFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
172 if (!fPMaxTable)
173 fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
174 if (!fSamplingTable)
175 fSamplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>;
176
177 G4ProductionCutsTable* theCoupleTable =
179
180 for (G4int i=0;i<(G4int)theCoupleTable->GetTableSize();++i)
181 {
182 const G4Material* material =
183 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
184 const G4ElementVector* theElementVector = material->GetElementVector();
185
186 for (std::size_t j=0;j<material->GetNumberOfElements();++j)
187 {
188 G4int iZ = theElementVector->at(j)->GetZasInt();
189 //read data files only in the master
190 if (!fLogAtomicCrossSection[iZ])
191 ReadDataFile(iZ);
192 }
193
194 //1) If the table has not been built for the material, do it!
195 if (!fLogFormFactorTable->count(material))
196 BuildFormFactorTable(material);
197
198 //2) retrieve or build the sampling table
199 if (!(fSamplingTable->count(material)))
200 InitializeSamplingAlgorithm(material);
201
202 //3) retrieve or build the pMax data
203 if (!fPMaxTable->count(material))
204 GetPMaxTable(material);
205 }
206
207 if (fVerboseLevel > 1) {
208 G4cout << "Penelope Rayleigh model v2008 is initialized " << G4endl
209 << "Energy range: "
210 << LowEnergyLimit() / keV << " keV - "
211 << HighEnergyLimit() / GeV << " GeV"
212 << G4endl;
213 }
214 }
215
216 if(fIsInitialised) return;
218 fIsInitialised = true;
219}
220
221//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
222
224 G4VEmModel *masterModel)
225{
226 if (fVerboseLevel > 3)
227 G4cout << "Calling G4PenelopeRayleighModel::InitialiseLocal()" << G4endl;
228 //
229 //Check that particle matches: one might have multiple master models (e.g.
230 //for e+ and e-).
231 //
232 if (part == fParticle)
233 {
234 //Get the const table pointers from the master to the workers
235 const G4PenelopeRayleighModel* theModel =
236 static_cast<G4PenelopeRayleighModel*> (masterModel);
237
238 //Copy pointers to the data tables
239 for(G4int i=0; i<=fMaxZ; ++i)
240 {
241 fLogAtomicCrossSection[i] = theModel->fLogAtomicCrossSection[i];
242 fAtomicFormFactor[i] = theModel->fAtomicFormFactor[i];
243 }
244 fLogFormFactorTable = theModel->fLogFormFactorTable;
245 fPMaxTable = theModel->fPMaxTable;
246 fSamplingTable = theModel->fSamplingTable;
247
248 //copy the G4DataVector with the grid
249 fLogQSquareGrid = theModel->fLogQSquareGrid;
250
251 //Same verbosity for all workers, as the master
252 fVerboseLevel = theModel->fVerboseLevel;
253 }
254
255 return;
256}
257
258
259//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
260namespace { G4Mutex PenelopeRayleighModelMutex = G4MUTEX_INITIALIZER; }
262 G4double energy,
263 G4double Z,
264 G4double,
265 G4double,
266 G4double)
267{
268 // Cross section of Rayleigh scattering in Penelope v2008 is calculated by the EPDL97
269 // tabulation, Cuellen et al. (1997), with non-relativistic form factors from Hubbel
270 // et al. J. Phys. Chem. Ref. Data 4 (1975) 471; Erratum ibid. 6 (1977) 615.
271
272 if (fVerboseLevel > 3)
273 G4cout << "Calling CrossSectionPerAtom() of G4PenelopeRayleighModel" << G4endl;
274
275 G4int iZ = G4int(Z);
276
277 if (!fLogAtomicCrossSection[iZ])
278 {
279 //If we are here, it means that Initialize() was inkoved, but the MaterialTable was
280 //not filled up. This can happen in a UnitTest or via G4EmCalculator
281 if (fVerboseLevel > 0)
282 {
283 //Issue a G4Exception (warning) only in verbose mode
285 ed << "Unable to retrieve the cross section table for Z=" << iZ << G4endl;
286 ed << "This can happen only in Unit Tests or via G4EmCalculator" << G4endl;
287 G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()",
288 "em2040",JustWarning,ed);
289 }
290 //protect file reading via autolock
291 G4AutoLock lock(&PenelopeRayleighModelMutex);
292 ReadDataFile(iZ);
293 lock.unlock();
294 }
295
296 G4double cross = 0;
297 G4PhysicsFreeVector* atom = fLogAtomicCrossSection[iZ];
298 if (!atom)
299 {
301 ed << "Unable to find Z=" << iZ << " in the atomic cross section table" << G4endl;
302 G4Exception("G4PenelopeRayleighModel::ComputeCrossSectionPerAtom()",
303 "em2041",FatalException,ed);
304 return 0;
305 }
306 G4double logene = G4Log(energy);
307 G4double logXS = atom->Value(logene);
308 cross = G4Exp(logXS);
309
310 if (fVerboseLevel > 2)
311 {
312 G4cout << "Rayleigh cross section at " << energy/keV << " keV for Z=" << Z <<
313 " = " << cross/barn << " barn" << G4endl;
314 }
315 return cross;
316}
317
318
319//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
320void G4PenelopeRayleighModel::BuildFormFactorTable(const G4Material* material)
321{
322 /*
323 1) get composition and equivalent molecular density
324 */
325 std::size_t nElements = material->GetNumberOfElements();
326 const G4ElementVector* elementVector = material->GetElementVector();
327 const G4double* fractionVector = material->GetFractionVector();
328
329 std::vector<G4double> *StechiometricFactors = new std::vector<G4double>;
330 for (std::size_t i=0;i<nElements;++i)
331 {
332 G4double fraction = fractionVector[i];
333 G4double atomicWeigth = (*elementVector)[i]->GetA()/(g/mole);
334 StechiometricFactors->push_back(fraction/atomicWeigth);
335 }
336 //Find max
337 G4double MaxStechiometricFactor = 0.;
338 for (std::size_t i=0;i<nElements;++i)
339 {
340 if ((*StechiometricFactors)[i] > MaxStechiometricFactor)
341 MaxStechiometricFactor = (*StechiometricFactors)[i];
342 }
343 if (MaxStechiometricFactor<1e-16)
344 {
346 ed << "Inconsistent data of atomic composition for " <<
347 material->GetName() << G4endl;
348 G4Exception("G4PenelopeRayleighModel::BuildFormFactorTable()",
349 "em2042",FatalException,ed);
350 }
351 //Normalize
352 for (std::size_t i=0;i<nElements;++i)
353 (*StechiometricFactors)[i] /= MaxStechiometricFactor;
354
355 /*
356 CREATE THE FORM FACTOR TABLE
357 */
358 G4PhysicsFreeVector* theFFVec = new G4PhysicsFreeVector(fLogQSquareGrid.size(),/*spline=*/true);
359
360 for (std::size_t k=0;k<fLogQSquareGrid.size();++k)
361 {
362 G4double ff2 = 0; //squared form factor
363 for (std::size_t i=0;i<nElements;++i)
364 {
365 G4int iZ = (*elementVector)[i]->GetZasInt();
366 G4PhysicsFreeVector* theAtomVec = fAtomicFormFactor[iZ];
367 G4double f = (*theAtomVec)[k]; //the q-grid is always the same
368 ff2 += f*f*(*StechiometricFactors)[i];
369 }
370 if (ff2)
371 theFFVec->PutValue(k,fLogQSquareGrid[k],G4Log(ff2)); //NOTICE: THIS IS log(Q^2) vs. log(F^2)
372 }
373 theFFVec->FillSecondDerivatives(); //vector is filled!
374 fLogFormFactorTable->insert(std::make_pair(material,theFFVec));
375
376 delete StechiometricFactors;
377 return;
378}
379
380//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
381
382void G4PenelopeRayleighModel::SampleSecondaries(std::vector<G4DynamicParticle*>* ,
383 const G4MaterialCutsCouple* couple,
384 const G4DynamicParticle* aDynamicGamma,
385 G4double,
386 G4double)
387{
388 // Sampling of the Rayleigh final state (namely, scattering angle of the photon)
389 // from the Penelope2008 model. The scattering angle is sampled from the atomic
390 // cross section dOmega/d(cosTheta) from Born ("Atomic Phyisics", 1969), disregarding
391 // anomalous scattering effects. The Form Factor F(Q) function which appears in the
392 // analytical cross section is retrieved via the method GetFSquared(); atomic data
393 // are tabulated for F(Q). Form factor for compounds is calculated according to
394 // the additivity rule. The sampling from the F(Q) is made via a Rational Inverse
395 // Transform with Aliasing (RITA) algorithm; RITA parameters are calculated once
396 // for each material and managed by G4PenelopeSamplingData objects.
397 // The sampling algorithm (rejection method) has efficiency 67% at low energy, and
398 // increases with energy. For E=100 keV the efficiency is 100% and 86% for
399 // hydrogen and uranium, respectively.
400
401 if (fVerboseLevel > 3)
402 G4cout << "Calling SamplingSecondaries() of G4PenelopeRayleighModel" << G4endl;
403
404 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
405
406 if (photonEnergy0 <= fIntrinsicLowEnergyLimit)
407 {
411 return ;
412 }
413
414 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
415
416 const G4Material* theMat = couple->GetMaterial();
417
418 //1) Verify if tables are ready
419 //Either Initialize() was not called, or we are in a slave and InitializeLocal() was
420 //not invoked
421 if (!fPMaxTable || !fSamplingTable || !fLogFormFactorTable)
422 {
423 //create a **thread-local** version of the table. Used only for G4EmCalculator and
424 //Unit Tests
425 fLocalTable = true;
426 if (!fLogFormFactorTable)
427 fLogFormFactorTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
428 if (!fPMaxTable)
429 fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
430 if (!fSamplingTable)
431 fSamplingTable = new std::map<const G4Material*,G4PenelopeSamplingData*>;
432 }
433
434 if (!fSamplingTable->count(theMat))
435 {
436 //If we are here, it means that Initialize() was inkoved, but the MaterialTable was
437 //not filled up. This can happen in a UnitTest
438 if (fVerboseLevel > 0)
439 {
440 //Issue a G4Exception (warning) only in verbose mode
442 ed << "Unable to find the fSamplingTable data for " <<
443 theMat->GetName() << G4endl;
444 ed << "This can happen only in Unit Tests" << G4endl;
445 G4Exception("G4PenelopeRayleighModel::SampleSecondaries()",
446 "em2019",JustWarning,ed);
447 }
448 const G4ElementVector* theElementVector = theMat->GetElementVector();
449 //protect file reading via autolock
450 G4AutoLock lock(&PenelopeRayleighModelMutex);
451 for (std::size_t j=0;j<theMat->GetNumberOfElements();++j)
452 {
453 G4int iZ = theElementVector->at(j)->GetZasInt();
454 if (!fLogAtomicCrossSection[iZ])
455 {
456 lock.lock();
457 ReadDataFile(iZ);
458 lock.unlock();
459 }
460 }
461 lock.lock();
462 //1) If the table has not been built for the material, do it!
463 if (!fLogFormFactorTable->count(theMat))
464 BuildFormFactorTable(theMat);
465
466 //2) retrieve or build the sampling table
467 if (!(fSamplingTable->count(theMat)))
468 InitializeSamplingAlgorithm(theMat);
469
470 //3) retrieve or build the pMax data
471 if (!fPMaxTable->count(theMat))
472 GetPMaxTable(theMat);
473 lock.unlock();
474 }
475
476 //Ok, restart the job
477 G4PenelopeSamplingData* theDataTable = fSamplingTable->find(theMat)->second;
478 G4PhysicsFreeVector* thePMax = fPMaxTable->find(theMat)->second;
479
480 G4double cosTheta = 1.0;
481
482 //OK, ready to go!
483 G4double qmax = 2.0*photonEnergy0/electron_mass_c2; //this is non-dimensional now
484
485 if (qmax < 1e-10) //very low momentum transfer
486 {
487 G4bool loopAgain=false;
488 do
489 {
490 loopAgain = false;
491 cosTheta = 1.0-2.0*G4UniformRand();
492 G4double G = 0.5*(1+cosTheta*cosTheta);
493 if (G4UniformRand()>G)
494 loopAgain = true;
495 }while(loopAgain);
496 }
497 else //larger momentum transfer
498 {
499 std::size_t nData = theDataTable->GetNumberOfStoredPoints();
500 G4double LastQ2inTheTable = theDataTable->GetX(nData-1);
501 G4double q2max = std::min(qmax*qmax,LastQ2inTheTable);
502
503 G4bool loopAgain = false;
504 G4double MaxPValue = thePMax->Value(photonEnergy0);
505 G4double xx=0;
506
507 //Sampling by rejection method. The rejection function is
508 //G = 0.5*(1+cos^2(theta))
509 //
510 do{
511 loopAgain = false;
512 G4double RandomMax = G4UniformRand()*MaxPValue;
513 xx = theDataTable->SampleValue(RandomMax);
514 //xx is a random value of q^2 in (0,q2max),sampled according to
515 //F(Q^2) via the RITA algorithm
516 if (xx > q2max)
517 loopAgain = true;
518 cosTheta = 1.0-2.0*xx/q2max;
519 G4double G = 0.5*(1+cosTheta*cosTheta);
520 if (G4UniformRand()>G)
521 loopAgain = true;
522 }while(loopAgain);
523 }
524
525 G4double sinTheta = std::sqrt(1-cosTheta*cosTheta);
526
527 // Scattered photon angles. ( Z - axis along the parent photon)
528 G4double phi = twopi * G4UniformRand() ;
529 G4double dirX = sinTheta*std::cos(phi);
530 G4double dirY = sinTheta*std::sin(phi);
531 G4double dirZ = cosTheta;
532
533 // Update G4VParticleChange for the scattered photon
534 G4ThreeVector photonDirection1(dirX, dirY, dirZ);
535
536 photonDirection1.rotateUz(photonDirection0);
537 fParticleChange->ProposeMomentumDirection(photonDirection1) ;
539
540 return;
541}
542
543
544//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
545
546void G4PenelopeRayleighModel::ReadDataFile(const G4int Z)
547{
548 if (fVerboseLevel > 2)
549 {
550 G4cout << "G4PenelopeRayleighModel::ReadDataFile()" << G4endl;
551 G4cout << "Going to read Rayleigh data files for Z=" << Z << G4endl;
552 }
553 const char* path = G4FindDataDir("G4LEDATA");
554 if(!path)
555 {
556 G4String excep = "G4LEDATA environment variable not set!";
557 G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
558 "em0006",FatalException,excep);
559 return;
560 }
561
562 /*
563 Read first the cross section file
564 */
565 std::ostringstream ost;
566 if (Z>9)
567 ost << path << "/penelope/rayleigh/pdgra" << Z << ".p08";
568 else
569 ost << path << "/penelope/rayleigh/pdgra0" << Z << ".p08";
570 std::ifstream file(ost.str().c_str());
571 if (!file.is_open())
572 {
573 G4String excep = "Data file " + G4String(ost.str()) + " not found!";
574 G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
575 "em0003",FatalException,excep);
576 }
577 G4int readZ =0;
578 std::size_t nPoints= 0;
579 file >> readZ >> nPoints;
580 //check the right file is opened.
581 if (readZ != Z || nPoints <= 0 || nPoints >= 5000)
582 {
584 ed << "Corrupted data file for Z=" << Z << G4endl;
585 G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
586 "em0005",FatalException,ed);
587 return;
588 }
589
590 fLogAtomicCrossSection[Z] = new G4PhysicsFreeVector((std::size_t)nPoints);
591 G4double ene=0,f1=0,f2=0,xs=0;
592 for (std::size_t i=0;i<nPoints;++i)
593 {
594 file >> ene >> f1 >> f2 >> xs;
595 //dimensional quantities
596 ene *= eV;
597 xs *= cm2;
598 fLogAtomicCrossSection[Z]->PutValue(i,G4Log(ene),G4Log(xs));
599 if (file.eof() && i != (nPoints-1)) //file ended too early
600 {
602 ed << "Corrupted data file for Z=" << Z << G4endl;
603 ed << "Found less than " << nPoints << "entries " <<G4endl;
604 G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
605 "em0005",FatalException,ed);
606 }
607 }
608 file.close();
609
610 /*
611 Then read the form factor file
612 */
613 std::ostringstream ost2;
614 if (Z>9)
615 ost2 << path << "/penelope/rayleigh/pdaff" << Z << ".p08";
616 else
617 ost2 << path << "/penelope/rayleigh/pdaff0" << Z << ".p08";
618 file.open(ost2.str().c_str());
619 if (!file.is_open())
620 {
621 G4String excep = "Data file " + G4String(ost2.str()) + " not found!";
622 G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
623 "em0003",FatalException,excep);
624 }
625 file >> readZ >> nPoints;
626 //check the right file is opened.
627 if (readZ != Z || nPoints <= 0 || nPoints >= 5000)
628 {
630 ed << "Corrupted data file for Z=" << Z << G4endl;
631 G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
632 "em0005",FatalException,ed);
633 return;
634 }
635 fAtomicFormFactor[Z] = new G4PhysicsFreeVector((std::size_t)nPoints);
636 G4double q=0,ff=0,incoh=0;
637 G4bool fillQGrid = false;
638 //fill this vector only the first time.
639 if (!fLogQSquareGrid.size())
640 fillQGrid = true;
641 for (std::size_t i=0;i<nPoints;++i)
642 {
643 file >> q >> ff >> incoh;
644 //q and ff are dimensionless (q is in units of (m_e*c)
645 fAtomicFormFactor[Z]->PutValue(i,q,ff);
646 if (fillQGrid)
647 {
648 fLogQSquareGrid.push_back(2.0*G4Log(q));
649 }
650 if (file.eof() && i != (nPoints-1)) //file ended too early
651 {
653 ed << "Corrupted data file for Z=" << Z << G4endl;
654 ed << "Found less than " << nPoints << "entries " <<G4endl;
655 G4Exception("G4PenelopeRayleighModel::ReadDataFile()",
656 "em0005",FatalException,ed);
657 }
658 }
659 file.close();
660 return;
661}
662
663//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
664
665G4double G4PenelopeRayleighModel::GetFSquared(const G4Material* mat, const G4double QSquared)
666{
667 G4double f2 = 0;
668 //Input value QSquared could be zero: protect the log() below against
669 //the FPE exception
670 //If Q<1e-10, set Q to 1e-10
671 G4double logQSquared = (QSquared>1e-10) ? G4Log(QSquared) : -23.;
672 //last value of the table
673 G4double maxlogQ2 = fLogQSquareGrid[fLogQSquareGrid.size()-1];
674
675 //now it should be all right
676 G4PhysicsFreeVector* theVec = fLogFormFactorTable->find(mat)->second;
677
678 if (!theVec)
679 {
681 ed << "Unable to retrieve F squared table for " << mat->GetName() << G4endl;
682 G4Exception("G4PenelopeRayleighModel::GetFSquared()",
683 "em2046",FatalException,ed);
684 return 0;
685 }
686 if (logQSquared < -20) // Q < 1e-9
687 {
688 G4double logf2 = (*theVec)[0]; //first value of the table
689 f2 = G4Exp(logf2);
690 }
691 else if (logQSquared > maxlogQ2)
692 f2 =0;
693 else
694 {
695 //log(Q^2) vs. log(F^2)
696 G4double logf2 = theVec->Value(logQSquared);
697 f2 = G4Exp(logf2);
698
699 }
700 if (fVerboseLevel > 3)
701 {
702 G4cout << "G4PenelopeRayleighModel::GetFSquared() in " << mat->GetName() << G4endl;
703 G4cout << "Q^2 = " << QSquared << " (units of 1/(m_e*c); F^2 = " << f2 << G4endl;
704 }
705 return f2;
706}
707
708//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
709
710void G4PenelopeRayleighModel::InitializeSamplingAlgorithm(const G4Material* mat)
711{
712 G4double q2min = 0;
713 G4double q2max = 0;
714 const std::size_t np = 150; //hard-coded in Penelope
715 //G4cout << "Init N= " << fLogQSquareGrid.size() << G4endl;
716 for (std::size_t i=1;i<fLogQSquareGrid.size();++i)
717 {
718 G4double Q2 = G4Exp(fLogQSquareGrid[i]);
719 if (GetFSquared(mat,Q2) > 1e-35)
720 {
721 q2max = G4Exp(fLogQSquareGrid[i-1]);
722 }
723 //G4cout << "Q2= " << Q2 << " q2max= " << q2max << G4endl;
724 }
725
726 std::size_t nReducedPoints = np/4;
727
728 //check for errors
729 if (np < 16)
730 {
731 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
732 "em2047",FatalException,
733 "Too few points to initialize the sampling algorithm");
734 }
735 if (q2min > (q2max-1e-10))
736 {
737 G4cout << "q2min= " << q2min << " q2max= " << q2max << G4endl;
738 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
739 "em2048",FatalException,
740 "Too narrow grid to initialize the sampling algorithm");
741 }
742
743 //This is subroutine RITAI0 of Penelope
744 //Create an object of type G4PenelopeRayleighSamplingData --> store in a map::Material*
745
746 //temporary vectors --> Then everything is stored in G4PenelopeSamplingData
747 G4DataVector* x = new G4DataVector();
748
749 /*******************************************************************************
750 Start with a grid of NUNIF points uniformly spaced in the interval q2min,q2max
751 ********************************************************************************/
752 std::size_t NUNIF = std::min(std::max(((std::size_t)8),nReducedPoints),np/2);
753 const G4int nip = 51; //hard-coded in Penelope
754
755 G4double dx = (q2max-q2min)/((G4double) NUNIF-1);
756 x->push_back(q2min);
757 for (std::size_t i=1;i<NUNIF-1;++i)
758 {
759 G4double app = q2min + i*dx;
760 x->push_back(app); //increase
761 }
762 x->push_back(q2max);
763
764 if (fVerboseLevel> 3)
765 G4cout << "Vector x has " << x->size() << " points, while NUNIF = " << NUNIF << G4endl;
766
767 //Allocate temporary storage vectors
768 G4DataVector* area = new G4DataVector();
769 G4DataVector* a = new G4DataVector();
770 G4DataVector* b = new G4DataVector();
771 G4DataVector* c = new G4DataVector();
772 G4DataVector* err = new G4DataVector();
773
774 for (std::size_t i=0;i<NUNIF-1;++i) //build all points but the last
775 {
776 //Temporary vectors for this loop
777 G4DataVector* pdfi = new G4DataVector();
778 G4DataVector* pdfih = new G4DataVector();
779 G4DataVector* sumi = new G4DataVector();
780
781 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1));
782 G4double pdfmax = 0;
783 for (G4int k=0;k<nip;k++)
784 {
785 G4double xik = (*x)[i]+k*dxi;
786 G4double pdfk = std::max(GetFSquared(mat,xik),0.);
787 pdfi->push_back(pdfk);
788 pdfmax = std::max(pdfmax,pdfk);
789 if (k < (nip-1))
790 {
791 G4double xih = xik + 0.5*dxi;
792 G4double pdfIK = std::max(GetFSquared(mat,xih),0.);
793 pdfih->push_back(pdfIK);
794 pdfmax = std::max(pdfmax,pdfIK);
795 }
796 }
797
798 //Simpson's integration
799 G4double cons = dxi*0.5*(1./3.);
800 sumi->push_back(0.);
801 for (G4int k=1;k<nip;k++)
802 {
803 G4double previous = (*sumi)[k-1];
804 G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]);
805 sumi->push_back(next);
806 }
807
808 G4double lastIntegral = (*sumi)[sumi->size()-1];
809 area->push_back(lastIntegral);
810 //Normalize cumulative function
811 G4double factor = 1.0/lastIntegral;
812 for (std::size_t k=0;k<sumi->size();++k)
813 (*sumi)[k] *= factor;
814
815 //When the PDF vanishes at one of the interval end points, its value is modified
816 if ((*pdfi)[0] < 1e-35)
817 (*pdfi)[0] = 1e-5*pdfmax;
818 if ((*pdfi)[pdfi->size()-1] < 1e-35)
819 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax;
820
821 G4double pli = (*pdfi)[0]*factor;
822 G4double pui = (*pdfi)[pdfi->size()-1]*factor;
823 G4double B_temp = 1.0-1.0/(pli*pui*dx*dx);
824 G4double A_temp = (1.0/(pli*dx))-1.0-B_temp;
825 G4double C_temp = 1.0+A_temp+B_temp;
826 if (C_temp < 1e-35)
827 {
828 a->push_back(0.);
829 b->push_back(0.);
830 c->push_back(1.);
831 }
832 else
833 {
834 a->push_back(A_temp);
835 b->push_back(B_temp);
836 c->push_back(C_temp);
837 }
838
839 //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation
840 //and the true pdf, extended over the interval (X(I),X(I+1))
841 G4int icase = 1; //loop code
842 G4bool reLoop = false;
843 err->push_back(0.);
844 do
845 {
846 reLoop = false;
847 (*err)[i] = 0.; //zero variable
848 for (G4int k=0;k<nip;k++)
849 {
850 G4double rr = (*sumi)[k];
851 G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/
852 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i]));
853 if (k == 0 || k == nip-1)
854 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]);
855 else
856 (*err)[i] += std::fabs(pap-(*pdfi)[k]);
857 }
858 (*err)[i] *= dxi;
859
860 //If err(I) is too large, the pdf is approximated by a uniform distribution
861 if ((*err)[i] > 0.1*(*area)[i] && icase == 1)
862 {
863 (*b)[i] = 0;
864 (*a)[i] = 0;
865 (*c)[i] = 1.;
866 icase = 2;
867 reLoop = true;
868 }
869 }while(reLoop);
870 delete pdfi;
871 delete pdfih;
872 delete sumi;
873 } //end of first loop over i
874
875 //Now assign last point
876 (*x)[x->size()-1] = q2max;
877 a->push_back(0.);
878 b->push_back(0.);
879 c->push_back(0.);
880 err->push_back(0.);
881 area->push_back(0.);
882
883 if (x->size() != NUNIF || a->size() != NUNIF ||
884 err->size() != NUNIF || area->size() != NUNIF)
885 {
887 ed << "Problem in building the Table for Sampling: array dimensions do not match" << G4endl;
888 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
889 "em2049",FatalException,ed);
890 }
891
892 /*******************************************************************************
893 New grid points are added by halving the sub-intervals with the largest absolute error
894 This is done up to np=150 points in the grid
895 ********************************************************************************/
896 do
897 {
898 G4double maxError = 0.0;
899 std::size_t iErrMax = 0;
900 for (std::size_t i=0;i<err->size()-2;++i)
901 {
902 //maxError is the lagest of the interval errors err[i]
903 if ((*err)[i] > maxError)
904 {
905 maxError = (*err)[i];
906 iErrMax = i;
907 }
908 }
909
910 //OK, now I have to insert one new point in the position iErrMax
911 G4double newx = 0.5*((*x)[iErrMax]+(*x)[iErrMax+1]);
912
913 x->insert(x->begin()+iErrMax+1,newx);
914 //Add place-holders in the other vectors
915 area->insert(area->begin()+iErrMax+1,0.);
916 a->insert(a->begin()+iErrMax+1,0.);
917 b->insert(b->begin()+iErrMax+1,0.);
918 c->insert(c->begin()+iErrMax+1,0.);
919 err->insert(err->begin()+iErrMax+1,0.);
920
921 //Now calculate the other parameters
922 for (std::size_t i=iErrMax;i<=iErrMax+1;++i)
923 {
924 //Temporary vectors for this loop
925 G4DataVector* pdfi = new G4DataVector();
926 G4DataVector* pdfih = new G4DataVector();
927 G4DataVector* sumi = new G4DataVector();
928
929 G4double dxLocal = (*x)[i+1]-(*x)[i];
930 G4double dxi = ((*x)[i+1]-(*x)[i])/(G4double (nip-1));
931 G4double pdfmax = 0;
932 for (G4int k=0;k<nip;k++)
933 {
934 G4double xik = (*x)[i]+k*dxi;
935 G4double pdfk = std::max(GetFSquared(mat,xik),0.);
936 pdfi->push_back(pdfk);
937 pdfmax = std::max(pdfmax,pdfk);
938 if (k < (nip-1))
939 {
940 G4double xih = xik + 0.5*dxi;
941 G4double pdfIK = std::max(GetFSquared(mat,xih),0.);
942 pdfih->push_back(pdfIK);
943 pdfmax = std::max(pdfmax,pdfIK);
944 }
945 }
946
947 //Simpson's integration
948 G4double cons = dxi*0.5*(1./3.);
949 sumi->push_back(0.);
950 for (G4int k=1;k<nip;k++)
951 {
952 G4double previous = (*sumi)[k-1];
953 G4double next = previous + cons*((*pdfi)[k-1]+4.0*(*pdfih)[k-1]+(*pdfi)[k]);
954 sumi->push_back(next);
955 }
956 G4double lastIntegral = (*sumi)[sumi->size()-1];
957 (*area)[i] = lastIntegral;
958
959 //Normalize cumulative function
960 G4double factor = 1.0/lastIntegral;
961 for (std::size_t k=0;k<sumi->size();++k)
962 (*sumi)[k] *= factor;
963
964 //When the PDF vanishes at one of the interval end points, its value is modified
965 if ((*pdfi)[0] < 1e-35)
966 (*pdfi)[0] = 1e-5*pdfmax;
967 if ((*pdfi)[pdfi->size()-1] < 1e-35)
968 (*pdfi)[pdfi->size()-1] = 1e-5*pdfmax;
969
970 G4double pli = (*pdfi)[0]*factor;
971 G4double pui = (*pdfi)[pdfi->size()-1]*factor;
972 G4double B_temp = 1.0-1.0/(pli*pui*dxLocal*dxLocal);
973 G4double A_temp = (1.0/(pli*dxLocal))-1.0-B_temp;
974 G4double C_temp = 1.0+A_temp+B_temp;
975 if (C_temp < 1e-35)
976 {
977 (*a)[i]= 0.;
978 (*b)[i] = 0.;
979 (*c)[i] = 1;
980 }
981 else
982 {
983 (*a)[i]= A_temp;
984 (*b)[i] = B_temp;
985 (*c)[i] = C_temp;
986 }
987 //OK, now get ERR(I), the integral of the absolute difference between the rational interpolation
988 //and the true pdf, extended over the interval (X(I),X(I+1))
989 G4int icase = 1; //loop code
990 G4bool reLoop = false;
991 do
992 {
993 reLoop = false;
994 (*err)[i] = 0.; //zero variable
995 for (G4int k=0;k<nip;k++)
996 {
997 G4double rr = (*sumi)[k];
998 G4double pap = (*area)[i]*(1.0+((*a)[i]+(*b)[i]*rr)*rr)*(1.0+((*a)[i]+(*b)[i]*rr)*rr)/
999 ((1.0-(*b)[i]*rr*rr)*(*c)[i]*((*x)[i+1]-(*x)[i]));
1000 if (k == 0 || k == nip-1)
1001 (*err)[i] += 0.5*std::fabs(pap-(*pdfi)[k]);
1002 else
1003 (*err)[i] += std::fabs(pap-(*pdfi)[k]);
1004 }
1005 (*err)[i] *= dxi;
1006
1007 //If err(I) is too large, the pdf is approximated by a uniform distribution
1008 if ((*err)[i] > 0.1*(*area)[i] && icase == 1)
1009 {
1010 (*b)[i] = 0;
1011 (*a)[i] = 0;
1012 (*c)[i] = 1.;
1013 icase = 2;
1014 reLoop = true;
1015 }
1016 }while(reLoop);
1017 delete pdfi;
1018 delete pdfih;
1019 delete sumi;
1020 }
1021 }while(x->size() < np);
1022
1023 if (x->size() != np || a->size() != np ||
1024 err->size() != np || area->size() != np)
1025 {
1026 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
1027 "em2050",FatalException,
1028 "Problem in building the extended Table for Sampling: array dimensions do not match ");
1029 }
1030
1031 /*******************************************************************************
1032 Renormalization
1033 ********************************************************************************/
1034 G4double ws = 0;
1035 for (std::size_t i=0;i<np-1;++i)
1036 ws += (*area)[i];
1037 ws = 1.0/ws;
1038 G4double errMax = 0;
1039 for (std::size_t i=0;i<np-1;++i)
1040 {
1041 (*area)[i] *= ws;
1042 (*err)[i] *= ws;
1043 errMax = std::max(errMax,(*err)[i]);
1044 }
1045
1046 //Vector with the normalized cumulative distribution
1047 G4DataVector* PAC = new G4DataVector();
1048 PAC->push_back(0.);
1049 for (std::size_t i=0;i<np-1;++i)
1050 {
1051 G4double previous = (*PAC)[i];
1052 PAC->push_back(previous+(*area)[i]);
1053 }
1054 (*PAC)[PAC->size()-1] = 1.;
1055
1056 /*******************************************************************************
1057 Pre-calculated limits for the initial binary search for subsequent sampling
1058 ********************************************************************************/
1059 std::vector<std::size_t> *ITTL = new std::vector<std::size_t>;
1060 std::vector<std::size_t> *ITTU = new std::vector<std::size_t>;
1061
1062 //Just create place-holders
1063 for (std::size_t i=0;i<np;++i)
1064 {
1065 ITTL->push_back(0);
1066 ITTU->push_back(0);
1067 }
1068
1069 G4double bin = 1.0/(np-1);
1070 (*ITTL)[0]=0;
1071 for (std::size_t i=1;i<(np-1);++i)
1072 {
1073 G4double ptst = i*bin;
1074 G4bool found = false;
1075 for (std::size_t j=(*ITTL)[i-1];j<np && !found;++j)
1076 {
1077 if ((*PAC)[j] > ptst)
1078 {
1079 (*ITTL)[i] = j-1;
1080 (*ITTU)[i-1] = j;
1081 found = true;
1082 }
1083 }
1084 }
1085 (*ITTU)[ITTU->size()-2] = ITTU->size()-1;
1086 (*ITTU)[ITTU->size()-1] = ITTU->size()-1;
1087 (*ITTL)[ITTL->size()-1] = ITTU->size()-2;
1088
1089 if (ITTU->size() != np || ITTU->size() != np)
1090 {
1091 G4Exception("G4PenelopeRayleighModel::InitializeSamplingAlgorithm()",
1092 "em2051",FatalException,
1093 "Problem in building the Limit Tables for Sampling: array dimensions do not match");
1094 }
1095
1096 /********************************************************************************
1097 Copy tables
1098 ********************************************************************************/
1100 for (std::size_t i=0;i<np;++i)
1101 {
1102 theTable->AddPoint((*x)[i],(*PAC)[i],(*a)[i],(*b)[i],(*ITTL)[i],(*ITTU)[i]);
1103 }
1104
1105 if (fVerboseLevel > 2)
1106 {
1107 G4cout << "*************************************************************************" <<
1108 G4endl;
1109 G4cout << "Sampling table for Penelope Rayleigh scattering in " << mat->GetName() << G4endl;
1110 theTable->DumpTable();
1111 }
1112 fSamplingTable->insert(std::make_pair(mat,theTable));
1113
1114 //Clean up temporary vectors
1115 delete x;
1116 delete a;
1117 delete b;
1118 delete c;
1119 delete err;
1120 delete area;
1121 delete PAC;
1122 delete ITTL;
1123 delete ITTU;
1124
1125 //DONE!
1126 return;
1127}
1128
1129//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1130
1131void G4PenelopeRayleighModel::GetPMaxTable(const G4Material* mat)
1132{
1133 if (!fPMaxTable)
1134 {
1135 G4cout << "G4PenelopeRayleighModel::BuildPMaxTable" << G4endl;
1136 G4cout << "Going to instanziate the fPMaxTable !" << G4endl;
1137 G4cout << "That should _not_ be here! " << G4endl;
1138 fPMaxTable = new std::map<const G4Material*,G4PhysicsFreeVector*>;
1139 }
1140 //check if the table is already there
1141 if (fPMaxTable->count(mat))
1142 return;
1143
1144 //otherwise build it
1145 if (!fSamplingTable)
1146 {
1147 G4Exception("G4PenelopeRayleighModel::GetPMaxTable()",
1148 "em2052",FatalException,
1149 "SamplingTable is not properly instantiated");
1150 return;
1151 }
1152
1153 //This should not be: the sampling table is built before the p-table
1154 if (!fSamplingTable->count(mat))
1155 {
1157 ed << "Sampling table for material " << mat->GetName() << " not found";
1158 G4Exception("G4PenelopeRayleighModel::GetPMaxTable()",
1159 "em2052",FatalException,
1160 ed);
1161 return;
1162 }
1163
1164 G4PenelopeSamplingData *theTable = fSamplingTable->find(mat)->second;
1165 std::size_t tablePoints = theTable->GetNumberOfStoredPoints();
1166
1167 std::size_t nOfEnergyPoints = fLogEnergyGridPMax.size();
1168 G4PhysicsFreeVector* theVec = new G4PhysicsFreeVector(nOfEnergyPoints);
1169
1170 const std::size_t nip = 51; //hard-coded in Penelope
1171
1172 for (std::size_t ie=0;ie<fLogEnergyGridPMax.size();++ie)
1173 {
1174 G4double energy = G4Exp(fLogEnergyGridPMax[ie]);
1175 G4double Qm = 2.0*energy/electron_mass_c2; //this is non-dimensional now
1176 G4double Qm2 = Qm*Qm;
1177 G4double firstQ2 = theTable->GetX(0);
1178 G4double lastQ2 = theTable->GetX(tablePoints-1);
1179 G4double thePMax = 0;
1180
1181 if (Qm2 > firstQ2)
1182 {
1183 if (Qm2 < lastQ2)
1184 {
1185 //bisection to look for the index of Qm
1186 std::size_t lowerBound = 0;
1187 std::size_t upperBound = tablePoints-1;
1188 while (lowerBound <= upperBound)
1189 {
1190 std::size_t midBin = (lowerBound + upperBound)/2;
1191 if( Qm2 < theTable->GetX(midBin))
1192 { upperBound = midBin-1; }
1193 else
1194 { lowerBound = midBin+1; }
1195 }
1196 //upperBound is the output (but also lowerBounf --> should be the same!)
1197 G4double Q1 = theTable->GetX(upperBound);
1198 G4double Q2 = Qm2;
1199 G4double DQ = (Q2-Q1)/((G4double)(nip-1));
1200 G4double theA = theTable->GetA(upperBound);
1201 G4double theB = theTable->GetB(upperBound);
1202 G4double thePAC = theTable->GetPAC(upperBound);
1203 G4DataVector* fun = new G4DataVector();
1204 for (std::size_t k=0;k<nip;++k)
1205 {
1206 G4double qi = Q1 + k*DQ;
1207 G4double tau = (qi-Q1)/
1208 (theTable->GetX(upperBound+1)-Q1);
1209 G4double con1 = 2.0*theB*tau;
1210 G4double ci = 1.0+theA+theB;
1211 G4double con2 = ci-theA*tau;
1212 G4double etap = 0;
1213 if (std::fabs(con1) > 1.0e-16*std::fabs(con2))
1214 etap = con2*(1.0-std::sqrt(1.0-2.0*tau*con1/(con2*con2)))/con1;
1215 else
1216 etap = tau/con2;
1217 G4double theFun = (theTable->GetPAC(upperBound+1)-thePAC)*
1218 (1.0+(theA+theB*etap)*etap)*(1.0+(theA+theB*etap)*etap)/
1219 ((1.0-theB*etap*etap)*ci*(theTable->GetX(upperBound+1)-Q1));
1220 fun->push_back(theFun);
1221 }
1222 //Now intergrate numerically the fun Cavalieri-Simpson's method
1223 G4DataVector* sum = new G4DataVector;
1224 G4double CONS = DQ*(1./12.);
1225 G4double HCONS = 0.5*CONS;
1226 sum->push_back(0.);
1227 G4double secondPoint = (*sum)[0] +
1228 (5.0*(*fun)[0]+8.0*(*fun)[1]-(*fun)[2])*CONS;
1229 sum->push_back(secondPoint);
1230 for (std::size_t hh=2;hh<nip-1;++hh)
1231 {
1232 G4double previous = (*sum)[hh-1];
1233 G4double next = previous+(13.0*((*fun)[hh-1]+(*fun)[hh])-
1234 (*fun)[hh+1]-(*fun)[hh-2])*HCONS;
1235 sum->push_back(next);
1236 }
1237 G4double last = (*sum)[nip-2]+(5.0*(*fun)[nip-1]+8.0*(*fun)[nip-2]-
1238 (*fun)[nip-3])*CONS;
1239 sum->push_back(last);
1240 thePMax = thePAC + (*sum)[sum->size()-1]; //last point
1241 delete fun;
1242 delete sum;
1243 }
1244 else
1245 {
1246 thePMax = 1.0;
1247 }
1248 }
1249 else
1250 {
1251 thePMax = theTable->GetPAC(0);
1252 }
1253
1254 //Write number in the table
1255 theVec->PutValue(ie,energy,thePMax);
1256 }
1257
1258 fPMaxTable->insert(std::make_pair(mat,theVec));
1259 return;
1260}
1261
1262//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
1263
1265{
1266 G4cout << "*****************************************************************" << G4endl;
1267 G4cout << "G4PenelopeRayleighModel: Form Factor Table for " << mat->GetName() << G4endl;
1268 //try to use the same format as Penelope-Fortran, namely Q (/m_e*c) and F
1269 G4cout << "Q/(m_e*c) F(Q) " << G4endl;
1270 G4cout << "*****************************************************************" << G4endl;
1271 if (!fLogFormFactorTable->count(mat))
1272 BuildFormFactorTable(mat);
1273
1274 G4PhysicsFreeVector* theVec = fLogFormFactorTable->find(mat)->second;
1275 for (std::size_t i=0;i<theVec->GetVectorLength();++i)
1276 {
1277 G4double logQ2 = theVec->GetLowEdgeEnergy(i);
1278 G4double Q = G4Exp(0.5*logQ2);
1279 G4double logF2 = (*theVec)[i];
1280 G4double F = G4Exp(0.5*logF2);
1281 G4cout << Q << " " << F << G4endl;
1282 }
1283 //DONE
1284 return;
1285}
1286
1287//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo...
1288
1289void G4PenelopeRayleighModel::SetParticle(const G4ParticleDefinition* p)
1290{
1291 if(!fParticle) {
1292 fParticle = p;
1293 }
1294}
std::vector< const G4Element * > G4ElementVector
const char * G4FindDataDir(const char *)
@ JustWarning
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:85
std::mutex G4Mutex
Definition: G4Threading.hh:81
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
const G4double * GetFractionVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4String & GetName() const
Definition: G4Material.hh:172
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4PenelopeRayleighModel(const G4ParticleDefinition *p=nullptr, const G4String &processName="PenRayleigh")
void DumpFormFactorTable(const G4Material *)
const G4ParticleDefinition * fParticle
G4ParticleChangeForGamma * fParticleChange
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel) override
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX) override
G4double GetA(size_t index)
G4double GetPAC(size_t index)
void AddPoint(G4double x0, G4double pac0, G4double a0, G4double b0, size_t ITTL0, size_t ITTU0)
G4double GetX(size_t index)
G4double SampleValue(G4double rndm)
G4double GetB(size_t index)
void PutValue(const std::size_t index, const G4double e, const G4double value)
G4double GetLowEdgeEnergy(const std::size_t index) const
G4double Value(const G4double energy, std::size_t &lastidx) const
std::size_t GetVectorLength() const
void FillSecondDerivatives(const G4SplineType=G4SplineType::Base, const G4double dir1=0.0, const G4double dir2=0.0)
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:746
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:124
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:641
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:634
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
G4double energy(const ThreeVector &p, const G4double m)