Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4DNAPTBExcitationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Authors: S. Meylan and C. Villagrasa (IRSN, France)
27// Models come from
28// M. Bug et al, Rad. Phys and Chem. 130, 459-479 (2017)
29//
30
32#include "G4SystemOfUnits.hh"
35
37 const G4String& nam)
38 : G4VDNAModel(nam, applyToMaterial)
39{
40 verboseLevel= 0;
41 // Verbosity scale:
42 // 0 = nothing
43 // 1 = warning for energy non-conservation
44 // 2 = details of energy budget
45 // 3 = calculation of cross sections, file openings, sampling of atoms
46 // 4 = entering in methods
47
48 // initialisation of mean energy loss for each material
49 tableMeanEnergyPTB["THF"] = 8.01*eV;
50 tableMeanEnergyPTB["PY"] = 7.61*eV;
51 tableMeanEnergyPTB["PU"] = 7.61*eV;
52 tableMeanEnergyPTB["TMP"] = 8.01*eV;
53
54 if( verboseLevel>0 )
55 {
56 G4cout << "PTB excitation model is constructed " << G4endl;
57 }
58}
59
60//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
61
63{
64
65}
66
67//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
68
70 const G4DataVector& /*cuts*/, G4ParticleChangeForGamma*)
71{
72 if (verboseLevel > 3)
73 G4cout << "Calling G4DNAPTBExcitationModel::Initialise()" << G4endl;
74
75 G4double scaleFactor = 1e-16*cm*cm;
76 G4double scaleFactorBorn = (1.e-22 / 3.343) * m*m;
77
79
80 //*******************************************************
81 // Cross section data
82 //*******************************************************
83
84 if(particle == electronDef)
85 {
86 G4String particleName = particle->GetParticleName();
87
89 particleName,
90 "dna/sigma_excitation_e-_PTB_THF",
91 scaleFactor);
92 SetLowELimit("THF", particleName, 9.*eV);
93 SetHighELimit("THF", particleName, 1.*keV);
94
96 particleName,
97 "dna/sigma_excitation_e-_PTB_PY",
98 scaleFactor);
99 SetLowELimit("PY", particleName, 9.*eV);
100 SetHighELimit("PY", particleName, 1.*keV);
101
103 particleName,
104 "dna/sigma_excitation_e-_PTB_PU",
105 scaleFactor);
106 SetLowELimit("PU", particleName, 9.*eV);
107 SetHighELimit("PU", particleName, 1.*keV);
108
110 particleName,
111 "dna/sigma_excitation_e-_PTB_TMP",
112 scaleFactor);
113 SetLowELimit("TMP", particleName, 9.*eV);
114 SetHighELimit("TMP", particleName, 1.*keV);
115
116 AddCrossSectionData("G4_WATER",
117 particleName,
118 "dna/sigma_excitation_e_born",
119 scaleFactorBorn);
120 SetLowELimit("G4_WATER", particleName, 9.*eV);
121 SetHighELimit("G4_WATER", particleName, 1.*keV);
122
123 // DNA materials
124 //
125 AddCrossSectionData("backbone_THF",
126 particleName,
127 "dna/sigma_excitation_e-_PTB_THF",
128 scaleFactor*33./30);
129 SetLowELimit("backbone_THF", particleName, 9.*eV);
130 SetHighELimit("backbone_THF", particleName, 1.*keV);
131
132 AddCrossSectionData("cytosine_PY",
133 particleName,
134 "dna/sigma_excitation_e-_PTB_PY",
135 scaleFactor*42./30);
136 SetLowELimit("cytosine_PY", particleName, 9.*eV);
137 SetHighELimit("cytosine_PY", particleName, 1.*keV);
138
139 AddCrossSectionData("thymine_PY",
140 particleName,
141 "dna/sigma_excitation_e-_PTB_PY",
142 scaleFactor*48./30);
143 SetLowELimit("thymine_PY", particleName, 9.*eV);
144 SetHighELimit("thymine_PY", particleName, 1.*keV);
145
146 AddCrossSectionData("adenine_PU",
147 particleName,
148 "dna/sigma_excitation_e-_PTB_PU",
149 scaleFactor*50./44);
150 SetLowELimit("adenine_PU", particleName, 9.*eV);
151 SetHighELimit("adenine_PU", particleName, 1.*keV);
152
153 AddCrossSectionData("guanine_PU",
154 particleName,
155 "dna/sigma_excitation_e-_PTB_PU",
156 scaleFactor*56./44);
157 SetLowELimit("guanine_PU", particleName, 9.*eV);
158 SetHighELimit("guanine_PU", particleName, 1.*keV);
159
160 AddCrossSectionData("backbone_TMP",
161 particleName,
162 "dna/sigma_excitation_e-_PTB_TMP",
163 scaleFactor*33./50);
164 SetLowELimit("backbone_TMP", particleName, 9.*eV);
165 SetHighELimit("backbone_TMP", particleName, 1.*keV);
166
167 // MPietrzak, adding paths for N2
169 particleName,
170 "dna/sigma_excitation_e-_PTB_N2",
171 scaleFactor);
172 SetLowELimit("N2", particleName, 13.*eV);
173 SetHighELimit("N2", particleName, 1.02*MeV);
174 // MPietrzak
175 }
176
177 //*******************************************************
178 // Load data
179 //*******************************************************
180
182
183 //*******************************************************
184 // Verbose
185 //*******************************************************
186
187 if( verboseLevel>0 )
188 {
189 G4cout << "PTB excitation model is initialized " << G4endl;
190 }
191}
192
193//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
194
196 const G4String& materialName,
197 const G4ParticleDefinition* particleDefinition,
198 G4double ekin,
199 G4double /*emin*/,
200 G4double /*emax*/)
201{
202 if (verboseLevel > 3)
203 G4cout << "Calling CrossSectionPerVolume() of G4DNAPTBExcitationModel" << G4endl;
204
205 // Get the name of the current particle
206 G4String particleName = particleDefinition->GetParticleName();
207
208 // initialise variables
209 G4double lowLim = 0;
210 G4double highLim = 0;
211 G4double sigma=0;
212
213 // Get the low energy limit for the current particle
214 lowLim = GetLowELimit(materialName, particleName);
215
216 // Get the high energy limit for the current particle
217 highLim = GetHighELimit(materialName, particleName);
218
219 // Check that we are in the correct energy range
220 if (ekin >= lowLim && ekin < highLim)
221 {
222 // Get the map with all the data tables
223 TableMapData* tableData = GetTableData();
224
225 // Retrieve the cross section value
226 sigma = (*tableData)[materialName][particleName]->FindValue(ekin);
227
228 if (verboseLevel > 2)
229 {
230 G4cout << "__________________________________" << G4endl;
231 G4cout << "°°° G4DNAPTBExcitationModel - XS INFO START" << G4endl;
232 G4cout << "°°° Kinetic energy(eV)=" << ekin/eV << " particle : " << particleName << G4endl;
233 G4cout << "°°° Cross section per "<< materialName <<" molecule (cm^2)=" << sigma/cm/cm << G4endl;
234 G4cout << "°°° G4DNAPTBExcitationModel - XS INFO END" << G4endl;
235 }
236
237 }
238
239 // Return the cross section value
240 return sigma;
241}
242
243//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
244
245void G4DNAPTBExcitationModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
246 const G4MaterialCutsCouple* /*couple*/,
247 const G4String& materialName,
248 const G4DynamicParticle* aDynamicParticle,
249 G4ParticleChangeForGamma* particleChangeForGamma,
250 G4double /*tmin*/,
251 G4double /*tmax*/)
252{
253 if (verboseLevel > 3)
254 G4cout << "Calling SampleSecondaries() of G4DNAPTBExcitationModel" << G4endl;
255
256 // Get the incident particle kinetic energy
257 G4double k = aDynamicParticle->GetKineticEnergy();
258 //Get the particle name
259 const G4String& particleName = aDynamicParticle->GetDefinition()->GetParticleName();
260 // Get the energy limits
261 G4double lowLim = GetLowELimit(materialName, particleName);
262 G4double highLim = GetHighELimit(materialName, particleName);
263
264 // Check if we are in the correct energy range
265 if (k >= lowLim && k < highLim)
266 {
267 if(materialName=="N2")
268 {
269
270 // Retrieve the excitation energy for the current material
271 G4int level = RandomSelectShell(k,particleName,materialName);
272 G4double excitationEnergy = ptbExcitationStructure.ExcitationEnergy(level, materialName);
273
274 // Calculate the new energy of the particle
275 G4double newEnergy = k - excitationEnergy;
276
277 // Check that the new energy is above zero before applying it the particle.
278 // Otherwise, do nothing.
279 if (newEnergy > 0)
280 {
281 particleChangeForGamma->ProposeMomentumDirection(aDynamicParticle->GetMomentumDirection());
282 particleChangeForGamma->SetProposedKineticEnergy(newEnergy);
283 particleChangeForGamma->ProposeLocalEnergyDeposit(excitationEnergy);
284 G4double ioniThres = ptbIonisationStructure.IonisationEnergy(0,materialName);
285 // if excitation energy greater than ionisation threshold, then autoionisaiton
286 if((excitationEnergy>ioniThres)&&(G4UniformRand()<0.5))
287 {
288 particleChangeForGamma->ProposeLocalEnergyDeposit(ioniThres);
289 // energy of ejected electron
290 G4double secondaryKinetic = excitationEnergy - ioniThres;
291 // random direction
292 G4double cosTheta = 2*G4UniformRand() - 1., phi = CLHEP::twopi*G4UniformRand();
293 G4double sinTheta = std::sqrt(1. - cosTheta*cosTheta);
294 G4double ux = sinTheta*std::cos(phi),
295 uy = sinTheta*std::sin(phi),
296 uz = cosTheta;
297 G4ThreeVector deltaDirection(ux,uy,uz);
298 // Create the new particle with its characteristics
299 G4DynamicParticle* dp = new G4DynamicParticle (G4Electron::Electron(),deltaDirection,secondaryKinetic) ;
300 fvect->push_back(dp);
301 }
302 } else {
303 G4ExceptionDescription description;
304 description<<"Kinetic energy <= 0 at "<<materialName<<" material !!!";
305 G4Exception("G4DNAPTBExcitationModel::SampleSecondaries","",FatalException,description);
306 }
307 } else if(materialName!="G4_WATER"){
308 // Retrieve the excitation energy for the current material
309 G4double excitationEnergy = tableMeanEnergyPTB[materialName];
310 // Calculate the new energy of the particle
311 G4double newEnergy = k - excitationEnergy;
312 // Check that the new energy is above zero before applying it the particle.
313 // Otherwise, do nothing.
314 if (newEnergy > 0){
315 particleChangeForGamma->ProposeMomentumDirection(aDynamicParticle->GetMomentumDirection());
316 particleChangeForGamma->SetProposedKineticEnergy(newEnergy);
317 particleChangeForGamma->ProposeLocalEnergyDeposit(excitationEnergy);
318 } else {
319 G4ExceptionDescription description;
320 description<<"Kinetic energy <= 0 at "<<materialName<<" material !!!";
321 G4Exception("G4DNAPTBExcitationModel::SampleSecondaries","",FatalException,description);
322 }
323 } else {
324 G4int level = RandomSelectShell(k,particleName, materialName);
325 G4double excitationEnergy = waterStructure.ExcitationEnergy(level);
326 G4double newEnergy = k - excitationEnergy;
327
328 if (newEnergy > 0){
329 particleChangeForGamma->ProposeMomentumDirection(aDynamicParticle->GetMomentumDirection());
330 particleChangeForGamma->SetProposedKineticEnergy(newEnergy);
331 particleChangeForGamma->ProposeLocalEnergyDeposit(excitationEnergy);
332 const G4Track * theIncomingTrack = particleChangeForGamma->GetCurrentTrack();
334 level,
335 theIncomingTrack);
336 } else {
337 G4ExceptionDescription description;
338 description<<"Kinetic energy <= 0 at "<<materialName<<" material !!!";
339 G4Exception("G4DNAPTBExcitationModel::SampleSecondaries","",FatalException,description);
340 }
341 }
342 }
343
344}
@ eExcitedMolecule
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
static G4DNAChemistryManager * Instance()
void CreateWaterMolecule(ElectronicModification, G4int, const G4Track *)
virtual ~G4DNAPTBExcitationModel()
~G4DNAPTBExcitationModel Destructor
G4DNAPTBExcitationModel(const G4String &applyToMaterial="all", const G4ParticleDefinition *p=0, const G4String &nam="DNAPTBExcitationModel")
G4DNAPTBExcitationModel Constructor.
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4String &materialName, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
CrossSectionPerVolume Retrieve the cross section corresponding to the current material,...
virtual void Initialise(const G4ParticleDefinition *particle, const G4DataVector &= *(new G4DataVector()), G4ParticleChangeForGamma *fpChangeForGamme=nullptr)
Initialise Set the materials for which the model can be used and defined the energy limits.
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4String &materialName, const G4DynamicParticle *, G4ParticleChangeForGamma *particleChangeForGamma, G4double tmin, G4double tmax)
SampleSecondaries If the model is selected for the ModelInterface then the SampleSecondaries method w...
G4double ExcitationEnergy(G4int ExcLevel, const G4String &materialName)
G4double IonisationEnergy(G4int level, const G4String &materialName)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * ElectronDefinition()
Definition: G4Electron.cc:88
static G4Electron * Electron()
Definition: G4Electron.cc:93
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
const G4String & GetParticleName() const
The G4VDNAModel class.
Definition: G4VDNAModel.hh:50
G4int RandomSelectShell(G4double k, const G4String &particle, const G4String &materialName)
RandomSelectShell Method to randomely select a shell from the data table uploaded....
Definition: G4VDNAModel.cc:182
TableMapData * GetTableData()
GetTableData.
Definition: G4VDNAModel.hh:193
void SetHighELimit(const G4String &material, const G4String &particle, G4double lim)
SetHighEnergyLimit.
Definition: G4VDNAModel.hh:169
std::map< G4String, std::map< G4String, G4DNACrossSectionDataSet *, std::less< G4String > > > TableMapData
Definition: G4VDNAModel.hh:183
void AddCrossSectionData(G4String materialName, G4String particleName, G4String fileCS, G4String fileDiffCS, G4double scaleFactor)
AddCrossSectionData Method used during the initialization of the model class to add a new material....
Definition: G4VDNAModel.cc:58
void SetLowELimit(const G4String &material, const G4String &particle, G4double lim)
SetLowEnergyLimit.
Definition: G4VDNAModel.hh:177
G4double GetHighELimit(const G4String &material, const G4String &particle)
GetHighEnergyLimit.
Definition: G4VDNAModel.hh:153
void LoadCrossSectionData(const G4String &particleName)
LoadCrossSectionData Method to loop on all the registered materials in the model and load the corresp...
Definition: G4VDNAModel.cc:75
G4double GetLowELimit(const G4String &material, const G4String &particle)
GetLowEnergyLimit.
Definition: G4VDNAModel.hh:161
const G4Track * GetCurrentTrack() const
void ProposeLocalEnergyDeposit(G4double anEnergyPart)