Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4BoldyshevTripletModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Author: Sebastien Incerti
27// 22 January 2012
28// on base of G4BoldyshevTripletModel (original version)
29// and G4LivermoreRayleighModel (MT version)
30
33#include "G4SystemOfUnits.hh"
34#include "G4Log.hh"
35#include "G4Exp.hh"
36
37//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
38
39using namespace std;
40
41//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
42
43const G4int G4BoldyshevTripletModel::maxZ;
44G4PhysicsFreeVector* G4BoldyshevTripletModel::data[] = {nullptr};
45
47 :G4VEmModel(nam),smallEnergy(4.*MeV)
48{
49 fParticleChange = nullptr;
50
51 lowEnergyLimit = 4.0*electron_mass_c2;
52 momentumThreshold_c = energyThreshold = xb = xn = lowEnergyLimit;
53
54 verboseLevel= 0;
55 // Verbosity scale for debugging purposes:
56 // 0 = nothing
57 // 1 = calculation of cross sections, file openings...
58 // 2 = entering in methods
59
60 if(verboseLevel > 0)
61 {
62 G4cout << "G4BoldyshevTripletModel is constructed " << G4endl;
63 }
64}
65
66//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
67
69{
70 if(IsMaster()) {
71 for(G4int i=0; i<maxZ; ++i) {
72 if(data[i]) {
73 delete data[i];
74 data[i] = nullptr;
75 }
76 }
77 }
78}
79
80//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
81
83 const G4DataVector&)
84{
85 if (verboseLevel > 1)
86 {
87 G4cout << "Calling Initialise() of G4BoldyshevTripletModel."
88 << G4endl
89 << "Energy range: "
90 << LowEnergyLimit() / MeV << " MeV - "
91 << HighEnergyLimit() / GeV << " GeV isMaster: " << IsMaster()
92 << G4endl;
93 }
94 // compute values only once
95 energyThreshold = 1.1*electron_mass_c2;
96 momentumThreshold_c = std::sqrt(energyThreshold * energyThreshold
97 - electron_mass_c2*electron_mass_c2);
98 G4double momentumThreshold_N = momentumThreshold_c/electron_mass_c2;
99 G4double t = 0.5*G4Log(momentumThreshold_N +
100 std::sqrt(momentumThreshold_N*momentumThreshold_N + 1.0));
101 //G4cout << 0.5*asinh(momentumThreshold_N) << " " << t << G4endl;
102 G4double sinht = std::sinh(t);
103 G4double cosht = std::cosh(t);
104 G4double logsinht = G4Log(2.*sinht);
105 G4double J1 = 0.5*(t*cosht/sinht - logsinht);
106 G4double J2 = (-2./3.)*logsinht + t*cosht/sinht
107 + (sinht - t*cosht*cosht*cosht)/(3.*sinht*sinht*sinht);
108
109 xb = 2.*(J1-J2)/J1;
110 xn = 1. - xb/6.;
111
112 if(IsMaster())
113 {
114 // Access to elements
115 const char* path = G4FindDataDir("G4LEDATA");
116
117 G4ProductionCutsTable* theCoupleTable =
119
120 G4int numOfCouples = (G4int)theCoupleTable->GetTableSize();
121
122 for(G4int i=0; i<numOfCouples; ++i)
123 {
124 const G4Material* material =
125 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
126 const G4ElementVector* theElementVector = material->GetElementVector();
127 std::size_t nelm = material->GetNumberOfElements();
128
129 for (std::size_t j=0; j<nelm; ++j)
130 {
131 G4int Z = std::min((*theElementVector)[j]->GetZasInt(), maxZ);
132 if(!data[Z]) { ReadData(Z, path); }
133 }
134 }
135 }
136 if(!fParticleChange) {
137 fParticleChange = GetParticleChangeForGamma();
138 }
139}
140
141//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
142
146 G4double)
147{
148 return lowEnergyLimit;
149}
150
151//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
152
153void G4BoldyshevTripletModel::ReadData(size_t Z, const char* path)
154{
155 if (verboseLevel > 1)
156 {
157 G4cout << "Calling ReadData() of G4BoldyshevTripletModel"
158 << G4endl;
159 }
160
161 if(data[Z]) { return; }
162
163 const char* datadir = path;
164
165 if(!datadir)
166 {
167 datadir = G4FindDataDir("G4LEDATA");
168 if(!datadir)
169 {
170 G4Exception("G4BoldyshevTripletModel::ReadData()",
171 "em0006",FatalException,
172 "Environment variable G4LEDATA not defined");
173 return;
174 }
175 }
176
177 data[Z] = new G4PhysicsFreeVector(0,/*spline=*/true);
178 std::ostringstream ost;
179 ost << datadir << "/livermore/tripdata/pp-trip-cs-" << Z <<".dat";
180 std::ifstream fin(ost.str().c_str());
181
182 if( !fin.is_open())
183 {
185 ed << "G4BoldyshevTripletModel data file <" << ost.str().c_str()
186 << "> is not opened!" << G4endl;
187 G4Exception("G4BoldyshevTripletModel::ReadData()",
188 "em0003",FatalException,
189 ed,"G4LEDATA version should be G4EMLOW6.27 or later.");
190 return;
191 }
192
193 else
194 {
195
196 if(verboseLevel > 3) { G4cout << "File " << ost.str()
197 << " is opened by G4BoldyshevTripletModel" << G4endl;}
198
199 data[Z]->Retrieve(fin, true);
200 }
201
202 // Activation of spline interpolation
203 data[Z]->FillSecondDerivatives();
204}
205
206//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
207
209 const G4ParticleDefinition* part,
211{
212 if (verboseLevel > 1)
213 {
214 G4cout << "Calling ComputeCrossSectionPerAtom() of G4BoldyshevTripletModel"
215 << G4endl;
216 }
217
218 if (GammaEnergy < lowEnergyLimit) { return 0.0; }
219
220 G4double xs = 0.0;
221 G4int intZ = std::max(1, std::min(G4lrint(Z), maxZ));
222 G4PhysicsFreeVector* pv = data[intZ];
223
224 // if element was not initialised
225 // do initialisation safely for MT mode
226 if(!pv)
227 {
228 InitialiseForElement(part, intZ);
229 pv = data[intZ];
230 if(!pv) { return xs; }
231 }
232 // x-section is taken from the table
233 xs = pv->Value(GammaEnergy);
234
235 if(verboseLevel > 1)
236 {
237 G4cout << "*** Triplet conversion xs for Z=" << Z << " at energy E(MeV)="
238 << GammaEnergy/MeV << " cs=" << xs/millibarn << " mb" << G4endl;
239 }
240 return xs;
241}
242
243//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
244
246 std::vector<G4DynamicParticle*>* fvect,
247 const G4MaterialCutsCouple* /*couple*/,
248 const G4DynamicParticle* aDynamicGamma,
250{
251
252 // The energies of the secondary particles are sampled using
253 // a modified Wheeler-Lamb model (see PhysRevD 7 (1973), 26)
254 if (verboseLevel > 1) {
255 G4cout << "Calling SampleSecondaries() of G4BoldyshevTripletModel"
256 << G4endl;
257 }
258
259 G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
260 G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
261
263
264 CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
265
266 // recoil electron thould be 3d particle
267 G4DynamicParticle* particle3 = nullptr;
268 static const G4double costlim = std::cos(4.47*CLHEP::pi/180.);
269
270 G4double loga, f1_re, greject, cost;
271 G4double cosThetaMax = (energyThreshold - electron_mass_c2
272 + electron_mass_c2*(energyThreshold + electron_mass_c2)/photonEnergy )
273 /momentumThreshold_c;
274 if (cosThetaMax > 1.) {
275 //G4cout << "G4BoldyshevTripletModel::SampleSecondaries: ERROR cosThetaMax= "
276 // << cosThetaMax << G4endl;
277 cosThetaMax = 1.0;
278 }
279
280 G4double logcostm = G4Log(cosThetaMax);
281 do {
282 cost = G4Exp(logcostm*rndmEngine->flat());
283 G4double are = 1./(14.*cost*cost);
284 G4double bre = (1.-5.*cost*cost)/(2.*cost);
285 loga = G4Log((1.+ cost)/(1.- cost));
286 f1_re = 1. - bre*loga;
287 greject = (cost < costlim) ? are*f1_re : 1.0;
288 } while(greject < rndmEngine->flat());
289
290 // Calculo de phi - elecron de recoil
291 G4double sint2 = (1. - cost)*(1. + cost);
292 G4double fp = 1. - sint2*loga/(2.*cost) ;
293 G4double rt, phi_re;
294 do {
295 phi_re = twopi*rndmEngine->flat();
296 rt = (1. - std::cos(2.*phi_re)*fp/f1_re)/twopi;
297 } while(rt < rndmEngine->flat());
298
299 // Calculo de la energia - elecron de recoil - relacion momento maximo <-> angulo
300 G4double S = electron_mass_c2*(2.* photonEnergy + electron_mass_c2);
301 G4double P2 = S - electron_mass_c2*electron_mass_c2;
302
303 G4double D2 = 4.*S * electron_mass_c2*electron_mass_c2 + P2*P2*sint2;
304 G4double ener_re = electron_mass_c2 * (S + electron_mass_c2*electron_mass_c2)/sqrt(D2);
305
306 if(ener_re >= energyThreshold)
307 {
308 G4double electronRKineEnergy = ener_re - electron_mass_c2;
309 G4double sint = std::sqrt(sint2);
310 G4ThreeVector electronRDirection (sint*std::cos(phi_re), sint*std::sin(phi_re), cost);
311 electronRDirection.rotateUz(photonDirection);
312 particle3 = new G4DynamicParticle (G4Electron::Electron(),
313 electronRDirection,
314 electronRKineEnergy);
315 }
316 else
317 {
318 // deposito la energia ener_re - electron_mass_c2
319 // G4cout << "electron de retroceso " << ener_re << G4endl;
320 fParticleChange->ProposeLocalEnergyDeposit(std::max(0.0, ener_re - electron_mass_c2));
321 ener_re = 0.0;
322 }
323
324 // Depaola (2004) suggested distribution for e+e- energy
325 // VI: very suspect that 1 random number is not enough
326 // and sampling below is not correct - should be fixed
327 G4double re = rndmEngine->flat();
328
329 G4double a = std::sqrt(16./xb - 3. - 36.*re*xn + 36.*re*re*xn*xn + 6.*xb*re*xn);
330 G4double c1 = G4Exp(G4Log((-6. + 12.*re*xn + xb + 2*a)*xb*xb)/3.);
331 epsilon = c1/(2.*xb) + (xb - 4.)/(2.*c1) + 0.5;
332
333 G4double photonEnergy1 = photonEnergy - ener_re ;
334 // resto al foton la energia del electron de retro.
335 G4double positronTotEnergy = std::max(epsilon*photonEnergy1, electron_mass_c2);
336 G4double electronTotEnergy = std::max(photonEnergy1 - positronTotEnergy, electron_mass_c2);
337
338 static const G4double a1 = 1.6;
339 static const G4double a2 = 0.5333333333;
340 G4double uu = -G4Log(rndmEngine->flat()*rndmEngine->flat());
341 G4double u = (0.25 > rndmEngine->flat()) ? uu*a1 : uu*a2;
342
343 G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
344 G4double sinte = std::sin(thetaEle);
345 G4double coste = std::cos(thetaEle);
346
347 G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
348 G4double sintp = std::sin(thetaPos);
349 G4double costp = std::cos(thetaPos);
350
351 G4double phi = twopi * rndmEngine->flat();
352 G4double sinp = std::sin(phi);
353 G4double cosp = std::cos(phi);
354
355 // Kinematics of the created pair:
356 // the electron and positron are assumed to have a symetric angular
357 // distribution with respect to the Z axis along the parent photon
358
359 G4double electronKineEnergy = electronTotEnergy - electron_mass_c2;
360
361 G4ThreeVector electronDirection (sinte*cosp, sinte*sinp, coste);
362 electronDirection.rotateUz(photonDirection);
363
365 electronDirection,
366 electronKineEnergy);
367
368 G4double positronKineEnergy = positronTotEnergy - electron_mass_c2;
369
370 G4ThreeVector positronDirection (-sintp*cosp, -sintp*sinp, costp);
371 positronDirection.rotateUz(photonDirection);
372
373 // Create G4DynamicParticle object for the particle2
375 positronDirection, positronKineEnergy);
376 // Fill output vector
377
378 fvect->push_back(particle1);
379 fvect->push_back(particle2);
380
381 if(particle3) { fvect->push_back(particle3); }
382
383 // kill incident photon
384 fParticleChange->SetProposedKineticEnergy(0.);
385 fParticleChange->ProposeTrackStatus(fStopAndKill);
386}
387
388//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
389
390#include "G4AutoLock.hh"
391namespace { G4Mutex BoldyshevTripletModelMutex = G4MUTEX_INITIALIZER; }
392
395{
396 G4AutoLock l(&BoldyshevTripletModelMutex);
397 // G4cout << "G4BoldyshevTripletModel::InitialiseForElement Z= "
398 // << Z << G4endl;
399 if(!data[Z]) { ReadData(Z); }
400 l.unlock();
401}
402
403//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4double epsilon(G4double density, G4double temperature)
G4double S(G4double temp)
std::vector< const G4Element * > G4ElementVector
const char * G4FindDataDir(const char *)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:85
std::mutex G4Mutex
Definition: G4Threading.hh:81
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
virtual double flat()=0
virtual G4double MinPrimaryEnergy(const G4Material *, const G4ParticleDefinition *, G4double)
virtual void InitialiseForElement(const G4ParticleDefinition *, G4int Z)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cut=0., G4double emax=DBL_MAX)
G4BoldyshevTripletModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="BoldyshevTripletConversion")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
void SetProposedKineticEnergy(G4double proposedKinEnergy)
G4bool Retrieve(std::ifstream &fIn, G4bool ascii=false)
G4double Value(const G4double energy, std::size_t &lastidx) const
void FillSecondDerivatives(const G4SplineType=G4SplineType::Base, const G4double dir1=0.0, const G4double dir2=0.0)
static G4Positron * Positron()
Definition: G4Positron.cc:93
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:124
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:641
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:634
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
int G4lrint(double ad)
Definition: templates.hh:134