83 HeMass(3.727417*
CLHEP::GeV),
84 theZieglerFactor(
CLHEP::eV*
CLHEP::cm2*1.0e-15),
85 lowestKinEnergy(0.25*
CLHEP::keV)
89 rateMassHe2p = HeMass/CLHEP::proton_mass_c2;
90 massFactor = 1000.*CLHEP::amu_c2/HeMass;
92 if(
nullptr != p) { SetParticle(p); }
93 else { SetParticle(theElectron); }
100 if(
IsMaster()) {
delete fASTAR; fASTAR =
nullptr; }
108 if(p != particle) { SetParticle(p); }
114 if(
nullptr == fParticleChange) {
117 if(pname ==
"proton" || pname ==
"GenericIon" || pname ==
"alpha") {
127 if(pname ==
"alpha") { isAlpha =
true; }
174 const G4double maxEnergy = std::min(tmax, maxKinEnergy);
175 const G4double cutEnergy = std::max(lowestKinEnergy*massRate, minKinEnergy);
177 if(cutEnergy < tmax) {
179 const G4double energy = kineticEnergy + mass;
180 const G4double energy2 = energy*energy;
181 const G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2;
183 cross = (maxEnergy - cutEnergy)/(cutEnergy*maxEnergy)
184 - beta2*
G4Log(maxEnergy/cutEnergy)/tmax;
185 if( 0.0 < spin ) { cross += 0.5*(maxEnergy - cutEnergy)/energy2; }
187 cross *= CLHEP::twopi_mc2_rcl2*chargeSquare/beta2;
188 cross = std::max(cross, 0.0);
207 sigma *= (HeEffChargeSquare(
Z, kinEnergy/CLHEP::MeV)/chargeSquare);
226 sigma *= (HeEffChargeSquare(zeff, kinEnergy/CLHEP::MeV)/chargeSquare);
239 const G4double tmin = std::max(lowestKinEnergy*massRate, minKinEnergy);
246 heChargeSquare = HeEffChargeSquare(zeff, T/CLHEP::MeV);
247 if(!isAlpha) { T *= rateMassHe2p; }
249 if(T < lowestKinEnergy) {
250 dedx = DEDX(material, lowestKinEnergy)*std::sqrt(T/lowestKinEnergy);
252 dedx = DEDX(material, T);
254 if(!isAlpha) { dedx /= heChargeSquare; }
256 const G4double tau = kineticEnergy/mass;
260 (
G4Log(x)*(tau + 1.)*(tau + 1.)/(tau * (tau + 2.0)) + 1.0 - x) *
262 if(isAlpha) { del *= heChargeSquare; }
265 dedx = std::max(dedx, 0.0);
282 if(isAlpha) {
return; }
286 if(eloss >= preKinEnergy || eloss < preKinEnergy*0.05) {
return; }
290 if(p != particle) { SetParticle(p); }
294 const G4double e = std::max(preKinEnergy - eloss*0.5, preKinEnergy*0.5);
317 const G4double xmax = std::min(tmax, maxEnergy);
318 const G4double xmin = std::max(lowestKinEnergy*massRate, minEnergy);
319 if(xmin >= xmax) {
return; }
322 const G4double energy = kineticEnergy + mass;
323 const G4double energy2 = energy*energy;
324 const G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/energy2;
334 deltaKinEnergy = xmin*xmax/(xmin*(1.0 - rndm[0]) + xmax*rndm[0]);
336 f = 1.0 - beta2*deltaKinEnergy/tmax;
339 G4cout <<
"G4BraggIonModel::SampleSecondary Warning! "
340 <<
"Majorant " << grej <<
" < "
341 << f <<
" for e= " << deltaKinEnergy
346 }
while( grej*rndm[1] >= f );
360 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
361 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) /
363 if(cost > 1.0) { cost = 1.0; }
364 G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
368 deltaDirection.
set(sint*cos(phi),sint*sin(phi), cost) ;
375 vdp->push_back(delta);
378 kineticEnergy -= deltaKinEnergy;
380 finalP = finalP.
unit();
391 if(pd != particle) { SetParticle(pd); }
393 G4double tmax = 2.0*electron_mass_c2*tau*(tau + 2.) /
394 (1. + 2.0*(tau + 1.)*ratio + ratio*ratio);
407 massRate = mass/CLHEP::proton_mass_c2;
408 ratio = CLHEP::electron_mass_c2/mass;
416 if(chFormula.empty()) {
return -1; }
420 static const G4int numberOfMolecula = 11;
421 static const G4String molName[numberOfMolecula] = {
422 "CaF_2",
"Cellulose_Nitrate",
"LiF",
"Policarbonate",
423 "(C_2H_4)_N-Polyethylene",
"(C_2H_4)_N-Polymethly_Methacralate",
424 "Polysterene",
"SiO_2",
"NaI",
"H_2O",
428 for (
G4int i=0; i<numberOfMolecula; ++i) {
429 if (chFormula == molName[i]) {
443 if (iMolecula >= 0) {
451 G4double T = kineticEnergy/CLHEP::MeV;
453 static const G4float a[11][5] = {
454 {9.43672f, 0.54398f, 84.341f, 1.3705f, 57.422f},
455 {67.1503f, 0.41409f, 404.512f, 148.97f, 20.99f},
456 {5.11203f, 0.453f, 36.718f, 50.6f, 28.058f},
457 {61.793f, 0.48445f, 361.537f, 57.889f, 50.674f},
458 {7.83464f, 0.49804f, 160.452f, 3.192f, 0.71922f},
459 {19.729f, 0.52153f, 162.341f, 58.35f, 25.668f},
460 {26.4648f, 0.50112f, 188.913f, 30.079f, 16.509f},
461 {7.8655f, 0.5205f, 63.96f, 51.32f, 67.775f},
462 {8.8965f, 0.5148f, 339.36f, 1.7205f, 0.70423f},
463 {2.959f, 0.53255f, 34.247f, 60.655f, 15.153f},
464 {3.80133f, 0.41590f, 12.9966f, 117.83f, 242.28f} };
466 static const G4double atomicWeight[11] = {
467 101.96128f, 44.0098f, 16.0426f, 28.0536f, 42.0804f,
468 104.1512f, 44.665f, 60.0843f, 18.0152f, 18.0152f, 12.0f};
481 G4double shigh =
G4Log( 1.0 + x3*1000.0 + x4*0.001 ) *x2*1000.0;
482 ionloss = slow*shigh / (slow + shigh) ;
483 ionloss *= sqrt(T*1000.0) ;
489 ionloss = slow*shigh / (slow + shigh) ;
498 ionloss = std::max(ionloss, 0.0);
501 ionloss /= (heChargeSquare*atomicWeight[iMolecula]);
506 ionloss = ElectronicStoppingPower( z, kineticEnergy ) ;
515G4BraggIonModel::ElectronicStoppingPower(
const G4double z,
527 G4double T = kineticEnergy/CLHEP::MeV;
529 static const G4float a[92][5] = {
530 { 0.35485f, 0.6456f, 6.01525f, 20.8933f, 4.3515f
531 },{ 0.58f, 0.59f, 6.3f, 130.0f, 44.07f
532 },{ 1.42f, 0.49f, 12.25f, 32.0f, 9.161f
533 },{ 2.206f, 0.51f, 15.32f, 0.25f, 8.995f
535 },{ 3.691f, 0.4128f, 18.48f, 50.72f, 9.0f
536 },{ 3.83523f, 0.42993f,12.6125f, 227.41f, 188.97f
538 },{ 1.9259f, 0.5550f, 27.1513f, 26.0665f, 6.2768f
539 },{ 2.81015f, 0.4759f, 50.0253f, 10.556f, 1.0382f
540 },{ 1.533f, 0.531f, 40.44f, 18.41f, 2.718f
541 },{ 2.303f, 0.4861f, 37.01f, 37.96f, 5.092f
543 },{ 9.894f, 0.3081f, 23.65f, 0.384f, 92.93f
544 },{ 4.3f, 0.47f, 34.3f, 3.3f, 12.74f
545 },{ 2.5f, 0.625f, 45.7f, 0.1f, 4.359f
546 },{ 2.1f, 0.65f, 49.34f, 1.788f, 4.133f
547 },{ 1.729f, 0.6562f, 53.41f, 2.405f, 3.845f
548 },{ 1.402f, 0.6791f, 58.98f, 3.528f, 3.211f
549 },{ 1.117f, 0.7044f, 69.69f, 3.705f, 2.156f
550 },{ 2.291f, 0.6284f, 73.88f, 4.478f, 2.066f
551 },{ 8.554f, 0.3817f, 83.61f, 11.84f, 1.875f
552 },{ 6.297f, 0.4622f, 65.39f, 10.14f, 5.036f
554 },{ 5.307f, 0.4918f, 61.74f, 12.4f, 6.665f
555 },{ 4.71f, 0.5087f, 65.28f, 8.806f, 5.948f
556 },{ 6.151f, 0.4524f, 83.0f, 18.31f, 2.71f
557 },{ 6.57f, 0.4322f, 84.76f, 15.53f, 2.779f
558 },{ 5.738f, 0.4492f, 84.6f, 14.18f, 3.101f
559 },{ 5.013f, 0.4707f, 85.8f, 16.55f, 3.211f
560 },{ 4.32f, 0.4947f, 76.14f, 10.85f, 5.441f
561 },{ 4.652f, 0.4571f, 80.73f, 22.0f, 4.952f
562 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 6.385f
563 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 7.502f
565 },{ 3.114f, 0.5236f, 76.67f, 7.62f, 8.514f
566 },{ 5.746f, 0.4662f, 79.24f, 1.185f, 7.993f
567 },{ 2.792f, 0.6346f, 106.1f, 0.2986f, 2.331f
568 },{ 4.667f, 0.5095f, 124.3f, 2.102f, 1.667f
569 },{ 2.44f, 0.6346f, 105.0f, 0.83f, 2.851f
570 },{ 1.413f, 0.7377f, 147.9f, 1.466f, 1.016f
571 },{ 11.72f, 0.3826f, 102.8f, 9.231f, 4.371f
572 },{ 7.126f, 0.4804f, 119.3f, 5.784f, 2.454f
573 },{ 11.61f, 0.3955f, 146.7f, 7.031f, 1.423f
574 },{ 10.99f, 0.41f, 163.9f, 7.1f, 1.052f
576 },{ 9.241f, 0.4275f, 163.1f, 7.954f, 1.102f
577 },{ 9.276f, 0.418f, 157.1f, 8.038f, 1.29f
578 },{ 3.999f, 0.6152f, 97.6f, 1.297f, 5.792f
579 },{ 4.306f, 0.5658f, 97.99f, 5.514f, 5.754f
580 },{ 3.615f, 0.6197f, 86.26f, 0.333f, 8.689f
581 },{ 5.8f, 0.49f, 147.2f, 6.903f, 1.289f
582 },{ 5.6f, 0.49f, 130.0f, 10.0f, 2.844f
583 },{ 3.55f, 0.6068f, 124.7f, 1.112f, 3.119f
584 },{ 3.6f, 0.62f, 105.8f, 0.1692f, 6.026f
585 },{ 5.4f, 0.53f, 103.1f, 3.931f, 7.767f
587 },{ 3.97f, 0.6459f, 131.8f, 0.2233f, 2.723f
588 },{ 3.65f, 0.64f, 126.8f, 0.6834f, 3.411f
589 },{ 3.118f, 0.6519f, 164.9f, 1.208f, 1.51f
590 },{ 3.949f, 0.6209f, 200.5f, 1.878f, 0.9126f
591 },{ 14.4f, 0.3923f, 152.5f, 8.354f, 2.597f
592 },{ 10.99f, 0.4599f, 138.4f, 4.811f, 3.726f
593 },{ 16.6f, 0.3773f, 224.1f, 6.28f, 0.9121f
594 },{ 10.54f, 0.4533f, 159.3f, 4.832f, 2.529f
595 },{ 10.33f, 0.4502f, 162.0f, 5.132f, 2.444f
596 },{ 10.15f, 0.4471f, 165.6f, 5.378f, 2.328f
598 },{ 9.976f, 0.4439f, 168.0f, 5.721f, 2.258f
599 },{ 9.804f, 0.4408f, 176.2f, 5.675f, 1.997f
600 },{ 14.22f, 0.363f, 228.4f, 7.024f, 1.016f
601 },{ 9.952f, 0.4318f, 233.5f, 5.065f, 0.9244f
602 },{ 9.272f, 0.4345f, 210.0f, 4.911f, 1.258f
603 },{ 10.13f, 0.4146f, 225.7f, 5.525f, 1.055f
604 },{ 8.949f, 0.4304f, 213.3f, 5.071f, 1.221f
605 },{ 11.94f, 0.3783f, 247.2f, 6.655f, 0.849f
606 },{ 8.472f, 0.4405f, 195.5f, 4.051f, 1.604f
607 },{ 8.301f, 0.4399f, 203.7f, 3.667f, 1.459f
609 },{ 6.567f, 0.4858f, 193.0f, 2.65f, 1.66f
610 },{ 5.951f, 0.5016f, 196.1f, 2.662f, 1.589f
611 },{ 7.495f, 0.4523f, 251.4f, 3.433f, 0.8619f
612 },{ 6.335f, 0.4825f, 255.1f, 2.834f, 0.8228f
613 },{ 4.314f, 0.5558f, 214.8f, 2.354f, 1.263f
614 },{ 4.02f, 0.5681f, 219.9f, 2.402f, 1.191f
615 },{ 3.836f, 0.5765f, 210.2f, 2.742f, 1.305f
616 },{ 4.68f, 0.5247f, 244.7f, 2.749f, 0.8962f
617 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 1.416f
619 },{ 2.892f, 0.6204f, 208.6f, 2.415f, 1.416f
621 },{ 4.728f, 0.5522f, 217.0f, 3.091f, 1.386f
622 },{ 6.18f, 0.52f, 170.0f, 4.0f, 3.224f
623 },{ 9.0f, 0.47f, 198.0f, 3.8f, 2.032f
624 },{ 2.324f, 0.6997f, 216.0f, 1.599f, 1.399f
625 },{ 1.961f, 0.7286f, 223.0f, 1.621f, 1.296f
626 },{ 1.75f, 0.7427f, 350.1f, 0.9789f, 0.5507f
627 },{ 10.31f, 0.4613f, 261.2f, 4.738f, 0.9899f
628 },{ 7.962f, 0.519f, 235.7f, 4.347f, 1.313f
629 },{ 6.227f, 0.5645f, 231.9f, 3.961f, 1.379f
630 },{ 5.246f, 0.5947f, 228.6f, 4.027f, 1.432f
632 },{ 5.408f, 0.5811f, 235.7f, 3.961f, 1.358f
633 },{ 5.218f, 0.5828f, 245.0f, 3.838f, 1.25f}
645 G4double shigh =
G4Log( 1.0 + x3*1000.0 + x4*0.001 )* x2*1000.0;
646 ionloss = slow*shigh*std::sqrt(T*1000.0) / (slow + shigh) ;
652 ionloss = slow*shigh / (slow + shigh) ;
661 ionloss = std::max(ionloss, 0.0);
677 if(material != currentMaterial) {
678 currentMaterial = material;
683 iICRU90 = (
nullptr != fICRU90) ? fICRU90->
GetIndex(baseMaterial) : -1;
686 iASTAR = fASTAR->
GetIndex(baseMaterial);
687 if(iASTAR < 0) { iMolecula = HasMaterial(baseMaterial); }
698 if(eloss > 0.0) {
return eloss*material->
GetDensity(); }
708 if(eloss > 0.0) {
return eloss*material->
GetDensity(); }
712 const G4double* theAtomicNumDensityVector =
717 eloss = StoppingPower(baseMaterial, aEnergy)*material->
GetDensity()/amu;
720 }
else if(1 == numberOfElements) {
723 eloss = ElectronicStoppingPower(z, aEnergy)
731 for (std::size_t i=0; i<numberOfElements; ++i) {
732 const G4Element* element = (*theElmVector)[i];
733 eloss += ElectronicStoppingPower(element->
GetZ(), aEnergy)
734 * theAtomicNumDensityVector[i];
737 return eloss*theZieglerFactor;
743G4BraggIonModel::HeEffChargeSquare(
const G4double z,
744 const G4double kinEnergyHeInMeV)
const
751 static const G4double c[6] = {0.2865, 0.1266, -0.001429,
752 0.02402,-0.01135, 0.001475};
754 G4double e = std::max(0.0,
G4Log(kinEnergyHeInMeV*massFactor));
757 for (
G4int i=1; i<6; ++i) {
763 w = 1.0 + (0.007 + 0.00005*z) *
G4Exp( -w*w ) ;
764 w = 4.0 * (1.0 -
G4Exp(-x)) * w * w ;
std::vector< const G4Element * > G4ElementVector
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
G4double G4Log(G4double x)
G4GLOB_DLL std::ostream G4cout
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
virtual void flatArray(const int size, double *vect)=0
G4int GetIndex(const G4Material *) const
G4double GetElectronicDEDX(G4int idx, G4double energy) const
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double MinEnergyCut(const G4ParticleDefinition *, const G4MaterialCutsCouple *couple) override
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
G4double GetChargeSquareRatio(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy) override
~G4BraggIonModel() override
G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy) final
G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) override
G4double GetParticleCharge(const G4ParticleDefinition *p, const G4Material *mat, G4double kineticEnergy) override
G4BraggIonModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="BraggIon")
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy) override
void CorrectionsAlongStep(const G4MaterialCutsCouple *, const G4DynamicParticle *, const G4double &length, G4double &eloss) override
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
G4double GetTotalMomentum() const
G4double EffectiveChargeSquareRatio(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
G4double GetParticleCharge(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
static G4EmParameters * Instance()
G4int GetIndex(const G4Material *) const
G4double GetElectronicDEDXforAlpha(const G4Material *, G4double scaledKinEnergy) const
G4double GetMeanExcitationEnergy() const
static G4LossTableManager * Instance()
G4EmCorrections * EmCorrections()
const G4Material * GetMaterial() const
G4double GetDensity() const
const G4String & GetChemicalFormula() const
const G4ElementVector * GetElementVector() const
const G4Material * GetBaseMaterial() const
G4double GetTotNbOfAtomsPerVolume() const
G4double GetTotNbOfElectPerVolume() const
G4IonisParamMat * GetIonisation() const
size_t GetNumberOfElements() const
const G4double * GetAtomicNumDensityVector() const
G4double GetElectronDensity() const
G4ICRU90StoppingData * GetICRU90StoppingData()
static G4NistManager * Instance()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
G4double GetPDGMass() const
G4double GetPDGCharge() const
const G4String & GetParticleName() const
G4double GetPDGSpin() const
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
void SetHighEnergyLimit(G4double)
G4VEmAngularDistribution * GetAngularDistribution()
G4int SelectRandomAtomNumber(const G4Material *) const
void SetDeexcitationFlag(G4bool val)
void SetAngularDistribution(G4VEmAngularDistribution *)
G4bool UseAngularGeneratorFlag() const
G4double MaxSecondaryKinEnergy(const G4DynamicParticle *dynParticle)
G4ParticleChangeForLoss * GetParticleChangeForLoss()