Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4MicroElecLOPhononModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// G4MicroElecLOPhononModel.cc,
28// 2020/05/20 P. Caron, C. Inguimbert are with ONERA [b]
29// Q. Gibaru is with CEA [a], ONERA [b] and CNES [c]
30// M. Raine and D. Lambert are with CEA [a]
31//
32// A part of this work has been funded by the French space agency(CNES[c])
33// [a] CEA, DAM, DIF - 91297 ARPAJON, France
34// [b] ONERA - DPHY, 2 avenue E.Belin, 31055 Toulouse, France
35// [c] CNES, 18 av.E.Belin, 31401 Toulouse CEDEX, France
36//
37// Based on the following publications
38//
39// - J. Pierron, C. Inguimbert, M. Belhaj, T. Gineste, J. Puech, M. Raine
40// Electron emission yield for low energy electrons:
41// Monte Carlo simulation and experimental comparison for Al, Ag, and Si
42// Journal of Applied Physics 121 (2017) 215107.
43// https://doi.org/10.1063/1.4984761
44//
45// - P. Caron,
46// Study of Electron-Induced Single-Event Upset in Integrated Memory Devices
47// PHD, 16th October 2019
48//
49// - Q.Gibaru, C.Inguimbert, P.Caron, M.Raine, D.Lambert, J.Puech,
50// Geant4 physics processes for microdosimetry and secondary electron emission simulation :
51// Extension of MicroElec to very low energies and new materials
52// NIM B, 2020, in review.
53//
54//
55//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
56
58#include "G4SystemOfUnits.hh"
60
62 const G4String& nam)
63 : G4VEmModel(nam)
64{
66}
67
68//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
69
71{}
72
73//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
74
76 const G4DataVector& /*cuts*/)
77{
78 if (isInitialised) { return; }
80 isInitialised = true;
81}
82
83//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
84
87 G4double ekin,
89{
90 if (material->GetName()!="G4_SILICON_DIOXIDE") return 0.0;
91
92 const G4double e = CLHEP::eplus / CLHEP::coulomb;
93 const G4double m0 = CLHEP::electron_mass_c2 / (CLHEP::c_squared*CLHEP::kg);
94 const G4double h = CLHEP::hbar_Planck * CLHEP::s/ (CLHEP::m2*CLHEP::kg);
95 const G4double eps0 = CLHEP::epsilon0 * CLHEP::m/ (CLHEP::farad);
96 const G4double kb = CLHEP::k_Boltzmann * CLHEP::kelvin/ CLHEP::joule;
97
98 // Parameters SiO2
99 phononEnergy = (0.75*0.153+0.25*0.063 )* CLHEP::eV;
100 const G4double eps = 3.84;
101 const G4double einf = 2.25;
102 const G4double T = 300; // should be taken from material property
103
104 G4double E =(ekin/CLHEP::eV)*e;
105
106 G4double hw = (phononEnergy / CLHEP::eV) * e;
107 G4double n = 1.0 / (std::exp(hw / (kb*T)) - 1); //Phonon distribution
108
109 G4double signe = (absor) ? -1. : 1.;
110
111 G4double racine = std::sqrt(1. + ((-signe*hw) / E));
112
113 G4double P = (std::pow(e, 2) / (4 * pi*eps0*h*h)) * (n + 0.5 + signe*0.5) * ((1 / einf) - (1 / eps))
114 * std::sqrt(m0 / (2 * E)) *hw* std::log((1 + racine) / (signe * 1 + ((-signe)*racine)));
115
116 G4double MFP = (std::sqrt(2. * E / m0) / P)*m;
117 return 2. / MFP;
118}
119
120//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
121
123 std::vector<G4DynamicParticle*>*,
125 const G4DynamicParticle* aDynamicElectron,
127{
128
129 G4double E = aDynamicElectron->GetKineticEnergy();
130 G4double Eprim = (absor) ? E + phononEnergy : E - phononEnergy;
131
132 G4double rand = G4UniformRand();
133 G4double B = (E + Eprim + 2 * std::sqrt(E*Eprim)) / (E + Eprim - 2 * std::sqrt(E*Eprim));
134 G4double cosTheta = ((E + Eprim) / (2 * std::sqrt(E*Eprim)))*(1 - std::pow(B, rand)) + std::pow(B, rand);
135
136 if(Interband){
137 cosTheta = 1 - 2 * G4UniformRand(); //Isotrope
138 }
139 G4double phi = twopi * G4UniformRand();
140 G4ThreeVector zVers = aDynamicElectron->GetMomentumDirection();
141 G4ThreeVector xVers = zVers.orthogonal();
142 G4ThreeVector yVers = zVers.cross(xVers);
143
144 G4double xDir = std::sqrt(1. - cosTheta*cosTheta);
145 G4double yDir = xDir;
146 xDir *= std::cos(phi);
147 yDir *= std::sin(phi);
148
149 G4ThreeVector zPrimeVers((xDir*xVers + yDir*yVers + cosTheta*zVers));
150
153}
154
155//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4double B(G4double temperature)
double G4double
Definition: G4Types.hh:83
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector orthogonal() const
Hep3Vector cross(const Hep3Vector &) const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
const G4String & GetName() const
Definition: G4Material.hh:172
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax) override
G4ParticleChangeForGamma * fParticleChangeForGamma
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4MicroElecLOPhononModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="G4MicroElecLOPhononModel")
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:124