Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4MuBremsstrahlungModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4MuBremsstrahlungModel
33//
34// Author: Vladimir Ivanchenko on base of Laszlo Urban code
35//
36// Creation date: 24.06.2002
37//
38// Modifications:
39//
40// 04-12-02 Change G4DynamicParticle constructor in PostStepDoIt (V.Ivanchenko)
41// 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
42// 24-01-03 Fix for compounds (V.Ivanchenko)
43// 27-01-03 Make models region aware (V.Ivanchenko)
44// 13-02-03 Add name (V.Ivanchenko)
45// 10-02-04 Add lowestKinEnergy (V.Ivanchenko)
46// 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko)
47// 03-08-05 Angular correlations according to PRM (V.Ivanchenko)
48// 13-02-06 add ComputeCrossSectionPerAtom (mma)
49// 21-03-06 Fix problem of initialisation in case when cuts are not defined (VI)
50// 07-11-07 Improve sampling of final state (A.Bogdanov)
51// 28-02-08 Use precomputed Z^1/3 and Log(A) (V.Ivanchenko)
52// 31-05-13 Use element selectors instead of local data structure (V.Ivanchenko)
53//
54// -------------------------------------------------------------------
55//
56//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
57//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
58
61#include "G4SystemOfUnits.hh"
62#include "G4Gamma.hh"
63#include "G4MuonMinus.hh"
64#include "G4MuonPlus.hh"
65#include "Randomize.hh"
66#include "G4Material.hh"
67#include "G4Element.hh"
68#include "G4ElementVector.hh"
70#include "G4ModifiedMephi.hh"
72#include "G4Log.hh"
73
74//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
75//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
76
78 {0.03377,0.16940,0.38069,0.61931,0.83060,0.96623};
80 {0.08566,0.18038,0.23396,0.23396,0.18038,0.08566};
82
84 const G4String& nam)
85 : G4VEmModel(nam),
86 sqrte(std::sqrt(G4Exp(1.))),
87 lowestKinEnergy(0.1*CLHEP::GeV),
88 minThreshold(0.9*CLHEP::keV)
89{
92
94 if(nullptr != p) { SetParticle(p); }
95}
96
97//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
98
101{
102 return minThreshold;
103}
104
105//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
106
109 G4double cut)
110{
111 return std::max(lowestKinEnergy, cut);
112}
113
114//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
115
117{
118 if(nullptr == particle) {
119 particle = p;
121 rmass = mass/CLHEP::electron_mass_c2 ;
122 cc = CLHEP::classic_electr_radius/rmass ;
123 coeff = 16.*CLHEP::fine_structure_const*cc*cc/3. ;
124 }
125}
126
127//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
128
130 const G4DataVector& cuts)
131{
132 SetParticle(p);
133 if(nullptr == fParticleChange) {
135 }
136 if(IsMaster() && p == particle && lowestKinEnergy < HighEnergyLimit()) {
137 if(0.0 == fDN[1]) {
138 for(G4int i=1; i<93; ++i) {
139 G4double dn = 1.54*nist->GetA27(i);
140 fDN[i] = dn;
141 if(1 < i) {
142 fDN[i] /= std::pow(dn, 1./G4double(i));
143 }
144 }
145 }
147 }
148}
149
150//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
151
153 G4VEmModel* masterModel)
154{
157 }
158}
159
160//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
161
163 const G4Material* material,
165 G4double kineticEnergy,
166 G4double cutEnergy)
167{
168 G4double dedx = 0.0;
169 if (kineticEnergy <= lowestKinEnergy) { return dedx; }
170
171 G4double cut = std::max(cutEnergy, minThreshold);
172 cut = std::min(cut, kineticEnergy);
173
174 const G4ElementVector* theElementVector = material->GetElementVector();
175 const G4double* theAtomicNumDensityVector =
176 material->GetAtomicNumDensityVector();
177
178 // loop for elements in the material
179 for (size_t i=0; i<material->GetNumberOfElements(); ++i) {
180 G4double loss =
181 ComputMuBremLoss((*theElementVector)[i]->GetZ(), kineticEnergy, cut);
182 dedx += loss*theAtomicNumDensityVector[i];
183 }
184 // G4cout << "BR e= " << kineticEnergy << " dedx= " << dedx << G4endl;
185 dedx = std::max(dedx, 0.);
186 return dedx;
187}
188
189//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
190
192 G4double tkin, G4double cut)
193{
194 G4double totalEnergy = mass + tkin;
195 static const G4double ak1 = 0.05;
196 static const G4int k2 = 5;
197 G4double loss = 0.;
198
199 G4double vcut = cut/totalEnergy;
200 G4int kkk = (G4int)(vcut/ak1) + k2;
201 if (kkk > 8) { kkk = 8; }
202 else if (kkk < 1) { kkk = 1; }
203 G4double hhh = vcut/(G4double)(kkk);
204
205 G4double aa = 0.;
206 for(G4int l=0; l<kkk; ++l) {
207 for(G4int i=0; i<6; ++i) {
208 G4double ep = (aa + xgi[i]*hhh)*totalEnergy;
209 loss += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep);
210 }
211 aa += hhh;
212 }
213
214 loss *= hhh*totalEnergy;
215 return loss;
216}
217
218//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
219
221 G4double tkin,
222 G4double Z,
223 G4double cut)
224{
225 G4double totalEnergy = tkin + mass;
226 static const G4double ak1 = 2.3;
227 static const G4int k2 = 4;
228 G4double cross = 0.;
229
230 if(cut >= tkin) return cross;
231
232 G4double vcut = cut/totalEnergy;
233 G4double vmax = tkin/totalEnergy;
234
235 G4double aaa = G4Log(vcut);
236 G4double bbb = G4Log(vmax);
237 G4int kkk = (G4int)((bbb-aaa)/ak1) + k2 ;
238 if(kkk > 8) { kkk = 8; }
239 else if (kkk < 1) { kkk = 1; }
240 G4double hhh = (bbb-aaa)/(G4double)(kkk);
241 G4double aa = aaa;
242
243 for(G4int l=0; l<kkk; ++l) {
244 for(G4int i=0; i<6; ++i) {
245 G4double ep = G4Exp(aa + xgi[i]*hhh)*totalEnergy;
246 cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep);
247 }
248 aa += hhh;
249 }
250
251 cross *= hhh;
252 //G4cout << "BR e= " << tkin<< " cross= " << cross/barn << G4endl;
253 return cross;
254}
255
256//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
257
259 G4double tkin,
260 G4double Z,
261 G4double gammaEnergy)
262// differential cross section
263{
264 G4double dxsection = 0.;
265 if(gammaEnergy > tkin) { return dxsection; }
266
267 G4double E = tkin + mass ;
268 G4double v = gammaEnergy/E ;
269 G4double delta = 0.5*mass*mass*v/(E-gammaEnergy) ;
270 G4double rab0 = delta*sqrte ;
271
272 G4int iz = G4lrint(Z);
273 if(iz < 1) { iz = 1; }
274 else if(iz > 92) { iz = 92; }
275
276 G4double z13 = 1.0/nist->GetZ13(iz);
277 G4double dnstar = fDN[iz];
278
279 G4double b,b1;
280 if(1 == iz) {
281 b = bh;
282 b1 = bh1;
283 } else {
284 b = btf;
285 b1 = btf1;
286 }
287
288 // nucleus contribution logarithm
289 G4double rab1 = b*z13;
290 G4double fn = G4Log(rab1/(dnstar*(CLHEP::electron_mass_c2+rab0*rab1))*
291 (mass + delta*(dnstar*sqrte-2.)));
292 fn = std::max(fn, 0.);
293 // electron contribution logarithm
294 G4double epmax1 = E/(1.+0.5*mass*rmass/E);
295 G4double fe = 0.;
296 if(gammaEnergy < epmax1) {
297 G4double rab2 = b1*z13*z13;
298 fe = G4Log(rab2*mass/((1.+delta*rmass/(CLHEP::electron_mass_c2*sqrte))*
299 (CLHEP::electron_mass_c2+rab0*rab2)));
300 fe = std::max(fe, 0.);
301 }
302
303 dxsection = coeff*(1.-v*(1. - 0.75*v))*Z*(fn*Z + fe)/gammaEnergy;
304 dxsection = std::max(dxsection, 0.0);
305 return dxsection;
306}
307
308//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
309
312 G4double kineticEnergy,
314 G4double cutEnergy,
315 G4double maxEnergy)
316{
317 G4double cross = 0.0;
318 if (kineticEnergy <= lowestKinEnergy) return cross;
319 G4double tmax = std::min(maxEnergy, kineticEnergy);
320 G4double cut = std::min(cutEnergy, kineticEnergy);
321 if (cut < minThreshold) cut = minThreshold;
322 if (cut >= tmax) return cross;
323
324 cross = ComputeMicroscopicCrossSection (kineticEnergy, Z, cut);
325 if(tmax < kineticEnergy) {
326 cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax);
327 }
328 return cross;
329}
330
331//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
332
334 std::vector<G4DynamicParticle*>* vdp,
335 const G4MaterialCutsCouple* couple,
336 const G4DynamicParticle* dp,
337 G4double minEnergy,
338 G4double maxEnergy)
339{
340 G4double kineticEnergy = dp->GetKineticEnergy();
341 // check against insufficient energy
342 G4double tmax = std::min(kineticEnergy, maxEnergy);
343 G4double tmin = std::min(kineticEnergy, minEnergy);
344 tmin = std::max(tmin, minThreshold);
345 if(tmin >= tmax) return;
346
347 // ===== sampling of energy transfer ======
348
349 G4ParticleMomentum partDirection = dp->GetMomentumDirection();
350
351 // select randomly one element constituing the material
352 const G4Element* anElement = SelectRandomAtom(couple,particle,kineticEnergy);
353 G4double Z = anElement->GetZ();
354 G4double func1 = tmin*
355 ComputeDMicroscopicCrossSection(kineticEnergy, Z, tmin);
356
357 G4double gEnergy;
358 G4double func2;
359
360 G4double xmin = G4Log(tmin/minThreshold);
361 G4double xmax = G4Log(tmax/tmin);
362
363 do {
364 gEnergy = minThreshold*G4Exp(xmin + G4UniformRand()*xmax);
365 func2 = gEnergy*ComputeDMicroscopicCrossSection(kineticEnergy, Z, gEnergy);
366
367 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
368 } while(func2 < func1*G4UniformRand());
369
370 // angles of the emitted gamma using general interface
371 G4ThreeVector gamDir =
373 couple->GetMaterial());
374 // create G4DynamicParticle object for the Gamma
375 G4DynamicParticle* gamma = new G4DynamicParticle(theGamma, gamDir, gEnergy);
376 vdp->push_back(gamma);
377
378 // compute post-interaction kinematics of primary e-/e+ based on
379 // energy-momentum conservation
380 const G4double totMomentum =
381 std::sqrt(kineticEnergy*(kineticEnergy + 2.0*mass));
382 G4ThreeVector dir =
383 (totMomentum*dp->GetMomentumDirection() - gEnergy*gamDir).unit();
384 const G4double finalE = kineticEnergy - gEnergy;
385
386 // if secondary gamma energy is higher than threshold(very high by default)
387 // then stop tracking the primary particle and create new secondary e-/e+
388 // instead of the primary one
389 if (gEnergy > SecondaryThreshold()) {
392 G4DynamicParticle* newdp = new G4DynamicParticle(particle, dir, finalE);
393 vdp->push_back(newdp);
394 } else {
395 // continue tracking the primary e-/e+ otherwise
398 }
399}
400
401//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
std::vector< const G4Element * > G4ElementVector
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4fissionEvent * fe
G4double G4Log(G4double x)
Definition: G4Log.hh:227
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4UniformRand()
Definition: Randomize.hh:52
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4double GetZ() const
Definition: G4Element.hh:131
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:211
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double MinEnergyCut(const G4ParticleDefinition *, const G4MaterialCutsCouple *) override
G4MuBremsstrahlungModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="MuBrem")
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy) override
void SetParticle(const G4ParticleDefinition *)
static const G4double xgi[6]
virtual G4double ComputeDMicroscopicCrossSection(G4double tkin, G4double Z, G4double gammaEnergy)
static const G4double wgi[6]
G4double ComputeMicroscopicCrossSection(G4double tkin, G4double Z, G4double cut)
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
G4ParticleDefinition * theGamma
G4ParticleChangeForLoss * fParticleChange
void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel) override
G4double ComputMuBremLoss(G4double Z, G4double tkin, G4double cut)
G4double MinPrimaryEnergy(const G4Material *, const G4ParticleDefinition *, G4double) override
const G4ParticleDefinition * particle
G4double GetA27(G4int Z) const
G4double GetZ13(G4double Z) const
static G4NistManager * Instance()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:831
G4VEmAngularDistribution * GetAngularDistribution()
Definition: G4VEmModel.hh:600
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:823
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:634
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:561
void SetAngularDistribution(G4VEmAngularDistribution *)
Definition: G4VEmModel.hh:607
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:139
G4double SecondaryThreshold() const
Definition: G4VEmModel.hh:669
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:109
void ProposeTrackStatus(G4TrackStatus status)
Definition: DoubConv.h:17
int G4lrint(double ad)
Definition: templates.hh:134