Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4UniversalFluctuation.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4UniversalFluctuation
33//
34// Author: V. Ivanchenko for Laszlo Urban
35//
36// Creation date: 03.01.2002
37//
38// Modifications:
39//
40//
41
42//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
43//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
44
47#include "G4SystemOfUnits.hh"
48#include "Randomize.hh"
49#include "G4Poisson.hh"
50#include "G4Material.hh"
52#include "G4DynamicParticle.hh"
54#include "G4Log.hh"
55
56//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
57
60 minLoss(10.*CLHEP::eV)
61{
63}
64
65//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
66
68{
69 delete [] rndmarray;
70}
71
72//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
73
75{
76 particle = part;
77 particleMass = part->GetPDGMass();
78 const G4double q = part->GetPDGCharge()/CLHEP::eplus;
79
80 // Derived quantities
82 m_massrate = CLHEP::electron_mass_c2 * m_Inv_particleMass;
83 chargeSquare = q*q;
84}
85
86//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
87
90 const G4DynamicParticle* dp,
91 const G4double tcut,
92 const G4double tmax,
93 const G4double length,
94 const G4double averageLoss)
95{
96 // Calculate actual loss from the mean loss.
97 // The model used to get the fluctuations is essentially the same
98 // as in Glandz in Geant3 (Cern program library W5013, phys332).
99 // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual
100
101 // shortcut for very small loss or from a step nearly equal to the range
102 // (out of validity of the model)
103 //
104 if (averageLoss < minLoss) { return averageLoss; }
105 meanLoss = averageLoss;
106 const G4double tkin = dp->GetKineticEnergy();
107 //G4cout<< "Emean= "<< meanLoss<< " tmax= "<< tmax<< " L= "<<length<<G4endl;
108
109 if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); }
110
111 CLHEP::HepRandomEngine* rndmEngineF = G4Random::getTheEngine();
112
113 const G4double gam = tkin * m_Inv_particleMass + 1.0;
114 const G4double gam2 = gam*gam;
115 const G4double beta = dp->GetBeta();
116 const G4double beta2 = beta*beta;
117
118 G4double loss(0.), siga(0.);
119
120 const G4Material* material = couple->GetMaterial();
121
122 // Gaussian regime
123 // for heavy particles only and conditions
124 // for Gauusian fluct. has been changed
125 //
126 if (particleMass > CLHEP::electron_mass_c2 &&
127 meanLoss >= minNumberInteractionsBohr*tcut && tmax <= 2.*tcut) {
128
129 siga = std::sqrt((tmax/beta2 - 0.5*tcut)*CLHEP::twopi_mc2_rcl2*
130 length*chargeSquare*material->GetElectronDensity());
131 const G4double sn = meanLoss/siga;
132
133 // thick target case
134 if (sn >= 2.0) {
135
136 const G4double twomeanLoss = meanLoss + meanLoss;
137 do {
138 loss = G4RandGauss::shoot(rndmEngineF, meanLoss, siga);
139 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
140 } while (0.0 > loss || twomeanLoss < loss);
141
142 // Gamma distribution
143 } else {
144
145 const G4double neff = sn*sn;
146 loss = meanLoss*G4RandGamma::shoot(rndmEngineF, neff, 1.0)/neff;
147 }
148 //G4cout << "Gauss: " << loss << G4endl;
149 return loss;
150 }
151
152 auto ioni = material->GetIonisation();
153 e0 = ioni->GetEnergy0fluct();
154
155 // very small step or low-density material
156 if(tcut <= e0) { return meanLoss; }
157
158 ipotFluct = ioni->GetMeanExcitationEnergy();
159 ipotLogFluct = ioni->GetLogMeanExcEnergy();
160
161 // width correction for small cuts
162 const G4double scaling = std::min(1.+0.5*CLHEP::keV/tcut, 1.50);
163 meanLoss /= scaling;
164
165 w2 = (tcut > ipotFluct) ?
166 G4Log(2.*CLHEP::electron_mass_c2*beta2*gam2)-beta2 : 0.0;
167 return SampleGlandz(rndmEngineF, material, tcut)*scaling;
168}
169
170//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
171
174 const G4Material*,
175 const G4double tcut)
176{
177 G4double a1(0.0), a3(0.0);
178 G4double loss = 0.0;
179 G4double e1 = ipotFluct;
180
181 if(tcut > e1) {
182 a1 = meanLoss*(1.-rate)/e1;
183 if(a1 < a0) {
184 const G4double fwnow = 0.1+(fw-0.1)*std::sqrt(a1/a0);
185 a1 /= fwnow;
186 e1 *= fwnow;
187 } else {
188 a1 /= fw;
189 e1 *= fw;
190 }
191 }
192
193 const G4double w1 = tcut/e0;
194 a3 = rate*meanLoss*(tcut - e0)/(e0*tcut*G4Log(w1));
195 if(a1 <= 0.) { a3 /= rate; }
196
197 //'nearly' Gaussian fluctuation if a1>nmaxCont&&a2>nmaxCont&&a3>nmaxCont
198 G4double emean = 0.;
199 G4double sig2e = 0.;
200
201 // excitation of type 1
202 if(a1 > 0.0) { AddExcitation(rndmEngineF, a1, e1, emean, loss, sig2e); }
203
204 if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); }
205
206 // ionisation
207 if(a3 > 0.) {
208 emean = 0.;
209 sig2e = 0.;
210 G4double p3 = a3;
211 G4double alfa = 1.;
212 if(a3 > nmaxCont) {
213 alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3);
214 const G4double alfa1 = alfa*G4Log(alfa)/(alfa-1.);
215 const G4double namean = a3*w1*(alfa-1.)/((w1-1.)*alfa);
216 emean += namean*e0*alfa1;
217 sig2e += e0*e0*namean*(alfa-alfa1*alfa1);
218 p3 = a3 - namean;
219 }
220
221 const G4double w3 = alfa*e0;
222 if(tcut > w3) {
223 const G4double w = (tcut-w3)/tcut;
224 const G4int nnb = (G4int)G4Poisson(p3);
225 if(nnb > 0) {
226 if(nnb > sizearray) {
227 sizearray = nnb;
228 delete [] rndmarray;
229 rndmarray = new G4double[nnb];
230 }
231 rndmEngineF->flatArray(nnb, rndmarray);
232 for (G4int k=0; k<nnb; ++k) { loss += w3/(1.-w*rndmarray[k]); }
233 }
234 }
235 if(sig2e > 0.0) { SampleGauss(rndmEngineF, emean, sig2e, loss); }
236 }
237 //G4cout << "### loss=" << loss << G4endl;
238 return loss;
239}
240
241//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
242
243
245 const G4Material* material,
246 const G4DynamicParticle* dp,
247 const G4double tcut,
248 const G4double tmax,
249 const G4double length)
250{
251 if(dp->GetDefinition() != particle) { InitialiseMe(dp->GetDefinition()); }
252 const G4double beta = dp->GetBeta();
253 return (tmax/(beta*beta) - 0.5*tcut) * CLHEP::twopi_mc2_rcl2 * length
254 * material->GetElectronDensity() * chargeSquare;
255}
256
257//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
258
259void
261 G4double q2)
262{
263 if(part != particle) {
264 particle = part;
265 particleMass = part->GetPDGMass();
266
267 // Derived quantities
269 m_massrate = CLHEP::electron_mass_c2 * m_Inv_particleMass;
270 }
271 chargeSquare = q2;
272}
273
274//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4double G4Log(G4double x)
Definition: G4Log.hh:227
G4long G4Poisson(G4double mean)
Definition: G4Poisson.hh:50
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
virtual void flatArray(const int size, double *vect)=0
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4double GetBeta() const
const G4Material * GetMaterial() const
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:221
G4double GetElectronDensity() const
Definition: G4Material.hh:212
G4double GetPDGCharge() const
const G4ParticleDefinition * particle
G4double SampleFluctuations(const G4MaterialCutsCouple *, const G4DynamicParticle *, const G4double, const G4double, const G4double, const G4double) override
void AddExcitation(CLHEP::HepRandomEngine *rndm, const G4double ax, const G4double ex, G4double &eav, G4double &eloss, G4double &esig2)
void InitialiseMe(const G4ParticleDefinition *) override
void SampleGauss(CLHEP::HepRandomEngine *rndm, const G4double eav, const G4double esig2, G4double &eloss)
G4double Dispersion(const G4Material *, const G4DynamicParticle *, const G4double, const G4double, const G4double) override
void SetParticleAndCharge(const G4ParticleDefinition *, G4double q2) override
virtual G4double SampleGlandz(CLHEP::HepRandomEngine *rndm, const G4Material *, const G4double tcut)
G4UniversalFluctuation(const G4String &nam="UniFluc")
Definition: DoubConv.h:17