Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4DNAQuinnPlasmonExcitationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Created on 2016/04/08
27//
28// Authors: D. Sakata, S. Incerti
29//
30// This class perform transmission term of volume plasmon excitation,
31// based on Quinn Model, see Phys. Rev. vol 126, number 4 (1962)
32
34#include "G4SystemOfUnits.hh"
35#include "G4RandomDirection.hh"
36
37//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
38
39using namespace std;
40
41//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
42
45 const G4String& nam):
46G4VEmModel(nam), isInitialised(false)
47{
48 fpMaterialDensity = 0;
49 fLowEnergyLimit = 10 * eV;
50 fHighEnergyLimit = 1.0 * GeV;
51
52 for(G4int i=0;i<100;i++) nValenceElectron[i]=0;
53
54 verboseLevel = 0;
55
56 if (verboseLevel > 0)
57 {
58 G4cout << "Quinn plasmon excitation model is constructed " << G4endl;
59 }
61 statCode = false;
62}
63
64//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
65
67{
68}
69
70//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
71
73 (const G4ParticleDefinition* particle,
74 const G4DataVector& /*cuts*/)
75{
76 for(G4int i=0;i<100;i++) nValenceElectron[i]=0;
77
78 if (verboseLevel > 3)
79 {
80 G4cout <<
81 "Calling G4DNAQuinnPlasmonExcitationModel::Initialise()"
82 << G4endl;
83 }
84
85 if(particle == G4Electron::ElectronDefinition())
86 {
87 fLowEnergyLimit = 10 * eV;
88 fHighEnergyLimit = 1.0 * GeV;
89 }
90 else
91 {
92 G4Exception("G4DNAQuinnPlasmonExcitationModel::Initialise","em0001",
93 FatalException,"Not defined for other particles than electrons.");
94 return;
95 }
96
97 // Get Number of valence electrons
98 G4ProductionCutsTable* theCoupleTable =
100
101 G4int numOfCouples = (G4int)theCoupleTable->GetTableSize();
102
103 for(G4int i=0;i<numOfCouples;i++){
104
105 const G4MaterialCutsCouple* couple =
106 theCoupleTable->GetMaterialCutsCouple(i);
107
108 const G4Material* material = couple->GetMaterial();
109
110 const G4ElementVector* theElementVector =material->GetElementVector();
111
112 std::size_t nelm = material->GetNumberOfElements();
113 if (nelm==1) // Protection: only for single element
114 {
115 G4int z = G4lrint((*theElementVector)[0]->GetZ());
116 if(z<=100)
117 {
118 nValenceElectron[z] = GetNValenceElectron(z);
119 }
120 else
121 {
122 G4Exception("G4DNAQuinnPlasmonExcitationModel::Initialise","em0002",
123 FatalException,"The model is not applied for z>100");
124 }
125 }
126 //for(G4int j=0;j<nelm;j++){
127 // G4int z=G4lrint((*theElementVector)[j]->GetZ());
128 // if(z<=100){nValenceElectron[z] = GetNValenceElectron(z);}
129 //}
130 }
131
132 if( verboseLevel>0 )
133 {
134 G4cout << "Quinn plasmon excitation model is initialized " << G4endl
135 << "Energy range: "
136 << LowEnergyLimit() / eV << " eV - "
137 << HighEnergyLimit() / keV << " keV for "
138 << particle->GetParticleName()
139 << G4endl;
140 }
141
142 if (isInitialised){return;}
144 isInitialised = true;
145}
146
147//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
148
150 (const G4Material* material,
151 const G4ParticleDefinition* particleDefinition,
152 G4double ekin,
153 G4double,
154 G4double)
155{
156 if (verboseLevel > 3)
157 {
158 G4cout <<
159 "Calling CrossSectionPerVolume() of G4DNAQuinnPlasmonExcitationModel"
160 << G4endl;
161 }
162
163 // Protection: only for single element
164 if(material->GetNumberOfElements()>1) return 0.;
165 G4double z = material->GetZ();
166
167 // Protection: only for Gold
168 if (z!=79){return 0.;}
169
170
171 G4double sigma = 0;
172 G4double atomicNDensity = material->GetAtomicNumDensityVector()[0];
173
174 if(atomicNDensity!= 0.0)
175 {
176 if (ekin >= fLowEnergyLimit && ekin < fHighEnergyLimit)
177 {
178 sigma = GetCrossSection(material,particleDefinition,ekin);
179 }
180
181 if (verboseLevel > 2)
182 {
183 G4cout<<"__________________________________" << G4endl;
184 G4cout<<"=== G4DNAQuinnPlasmonExcitationModel - XS INFO START"<<G4endl;
185 G4cout<<"=== Kinetic energy (eV)=" << ekin/eV << " particle : "
186 <<particleDefinition->GetParticleName() << G4endl;
187 G4cout<<"=== Cross section per atom for Z="<<z<<" is (cm^2)"
188 <<sigma/cm/cm << G4endl;
189 G4cout<<"=== Cross section per atom for Z="<<z<<" is (cm^-1)="
190 <<sigma*atomicNDensity/(1./cm) << G4endl;
191 G4cout<<"=== G4DNAQuinnPlasmonExcitationModel - XS INFO END" << G4endl;
192 }
193 }
194
195 return sigma*atomicNDensity;
196}
197
198//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
199
201 (std::vector<G4DynamicParticle*>* /*fvect*/,
202 const G4MaterialCutsCouple* couple,
203 const G4DynamicParticle* aDynamicParticle,
205{
206
207 if (verboseLevel > 3)
208 {
209 G4cout <<
210 "Calling SampleSecondaries() of G4DNAQuinnPlasmonExcitationModel"
211 << G4endl;
212 }
213
214 const G4Material *material = couple->GetMaterial();
215
216 G4ParticleDefinition* particle = aDynamicParticle->GetDefinition();
217
218 G4double k = aDynamicParticle->GetKineticEnergy();
219
220 if(particle == G4Electron::ElectronDefinition())
221 {
222 G4double e = 1.;
223 G4int z = material->GetZ();
224 G4int Nve = 0;
225
226 //TODO: have to be change to realistic!!
227 if(z<100) Nve = nValenceElectron[z];
228
229 G4double A = material->GetA()/g/mole;
230 G4double Dens = material->GetDensity()/g*cm*cm*cm;
231 G4double veDens = Dens*CLHEP::Avogadro*Nve/A;
232
233 G4double omega_p = std::sqrt(veDens*std::pow(e,2)/
234 (CLHEP::epsilon0/(1./cm)*CLHEP::electron_mass_c2
235 /(CLHEP::c_squared/cm/cm)));
236
237 G4double excitationEnergy = CLHEP::hbar_Planck*omega_p;
238 G4double newEnergy = k - excitationEnergy;
239
240
241 if (newEnergy > 0)
242 {
244 ProposeMomentumDirection(aDynamicParticle->GetMomentumDirection());
245
247
248 if(!statCode)
249 {
251 }
252 else
253 {
255
256 }
257 }
258 }
259}
260
261//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
262
264 (const G4Material* material,
265 const G4ParticleDefinition* particle,
266 G4double kineticEnergy)
267{
268 G4double value=0;
269
270 if(particle == G4Electron::ElectronDefinition())
271 {
272 G4double e = 1.;
273 G4int z = material->GetZ();
274 G4int Nve = 0;
275 if(z<100) Nve = nValenceElectron[z];
276 G4double A = material->GetA()/g/mole;
277 G4double Dens = material->GetDensity()/g*cm*cm*cm;
278 G4double veDens = Dens*CLHEP::Avogadro*Nve/A;
279
280 G4double omega_p = std::sqrt(veDens*std::pow(e,2)
281 /(CLHEP::epsilon0/(1./cm)*CLHEP::electron_mass_c2/
282 (CLHEP::c_squared/cm/cm)));
283
284 G4double fEnergy = std::pow(CLHEP::h_Planck,2)/(8*CLHEP::electron_mass_c2)*
285 std::pow(3*veDens/CLHEP::pi,2./3.)/e
286 *(CLHEP::c_squared/cm/cm);
287
288 G4double p0 = sqrt(2*CLHEP::electron_mass_c2
289 /(CLHEP::c_squared/cm/cm)*fEnergy);
290
291 G4double p = sqrt(2*CLHEP::electron_mass_c2
292 /(CLHEP::c_squared/cm/cm)*kineticEnergy);
293
294 G4double mfp = 2*CLHEP::Bohr_radius/cm*kineticEnergy
295 /(CLHEP::hbar_Planck*omega_p)/
296 (G4Log((std::pow(std::pow(p0,2)
297 +2*CLHEP::electron_mass_c2/
298 (CLHEP::c_squared/cm/cm)*omega_p
299 *CLHEP::hbar_Planck,1./2.)-p0)
300 /(p-std::pow(std::pow(p,2)-2*CLHEP::electron_mass_c2/
301 (CLHEP::c_squared/cm/cm)*omega_p
302 *CLHEP::hbar_Planck,1./2.))));
303
304 G4double excitationEnergy = CLHEP::hbar_Planck*omega_p;
305
306 if((0<mfp)&&(0<veDens)&&(excitationEnergy<kineticEnergy)){
307 value = 1./(veDens*mfp);
308 }
309 }
310 return value*cm*cm;
311}
312
313//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
314
315G4int G4DNAQuinnPlasmonExcitationModel::GetNValenceElectron(G4int z)
316{
317
318 G4int Nve=0;
319
320 // Current limitation to gold
321 if (z!=79){return 0.;}
322
323 if (verboseLevel > 3)
324 {
325 G4cout <<
326 "Calling GetNValenceElectron() of G4DNAQuinnPlasmonExcitationModel"
327 << G4endl;
328 }
329
330 const char *datadir=0;
331
332 if(!datadir)
333 {
334 datadir = G4FindDataDir("G4LEDATA");
335 if(!datadir)
336 {
337 G4Exception("G4DNAQuinnPlasmonExcitationModel::GetNValenceElectron()"
338 ,"em0002",FatalException,
339 "Enviroment variable G4LEDATA not defined");
340 return 0;
341 }
342 }
343
344 std::ostringstream targetfile;
345 targetfile.str("");
346 targetfile.clear(stringstream::goodbit);
347 targetfile << datadir <<"/dna/atomicstate_Z"<< z <<".dat";
348 std::ifstream fin(targetfile.str().c_str());
349
350 if(!fin)
351 {
352 G4cout<< " Error : "<< targetfile.str() <<" is not found "<<endl;
353 G4Exception("G4DNAQuinnPlasmonExcitationModel::GetNValenceElectron()"
354 ,"em0003",FatalException,
355 "There is no target file");
356 return 0;
357 }
358
359 string buff0,buff1,buff2,buff3,buff4,buff5,buff6;
360 fin >> buff0 >>buff1>>buff2>>buff3>>buff4>>buff5>>buff6;
361
362 while(true){
363 fin >> buff0 >>buff1>>buff2>>buff3>>buff4>>buff5>>buff6;
364 if(!fin.eof())
365 {
366 Nve = stoi(buff3);
367 }
368 else
369 {
370 break;
371 }
372 }
373 return Nve;
374}
375
std::vector< const G4Element * > G4ElementVector
const char * G4FindDataDir(const char *)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
G4double G4Log(G4double x)
Definition: G4Log.hh:227
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4double A[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &= *(new G4DataVector()))
virtual G4double GetCrossSection(const G4Material *material, const G4ParticleDefinition *, G4double kineticEnergy)
G4DNAQuinnPlasmonExcitationModel(const G4ParticleDefinition *p=0, const G4String &nam="DNAQuinnPlasmonExcitationModel")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual G4double CrossSectionPerVolume(const G4Material *material, const G4ParticleDefinition *p, G4double ekin, G4double emin, G4double emax)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * ElectronDefinition()
Definition: G4Electron.cc:88
const G4Material * GetMaterial() const
G4double GetDensity() const
Definition: G4Material.hh:175
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
G4double GetZ() const
Definition: G4Material.cc:745
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:211
G4double GetA() const
Definition: G4Material.cc:759
void SetProposedKineticEnergy(G4double proposedKinEnergy)
const G4String & GetParticleName() const
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:124
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:641
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:634
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
int G4lrint(double ad)
Definition: templates.hh:134