Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4INCLNDeltaOmegaProductionChannel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// INCL++ intra-nuclear cascade model
27// Alain Boudard, CEA-Saclay, France
28// Joseph Cugnon, University of Liege, Belgium
29// Jean-Christophe David, CEA-Saclay, France
30// Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31// Sylvie Leray, CEA-Saclay, France
32// Davide Mancusi, CEA-Saclay, France
33//
34#define INCLXX_IN_GEANT4_MODE 1
35
36#include "globals.hh"
37
41#include "G4INCLRandom.hh"
42#include "G4INCLGlobals.hh"
43#include "G4INCLLogger.hh"
45
46namespace G4INCL {
47
48 const G4double NDeltaOmegaProductionChannel::angularSlope = 6.;
49 const G4int NDeltaOmegaProductionChannel::maxTries = 100000;
50
52 : particle1(p1), particle2(p2)
53 {}
54
56
57 G4double NDeltaOmegaProductionChannel::sampleDeltaMass(G4double ecmorigin) {
58 const G4double ecm = ecmorigin - 783.437; // 783.437 MeV translation to open pion(delta) production in NNOmega
59 const G4double maxDeltaMass = ecm - ParticleTable::effectiveNucleonMass - 1.0;
60 const G4double maxDeltaMassRndm = std::atan((maxDeltaMass-ParticleTable::effectiveDeltaMass)*2./ParticleTable::effectiveDeltaWidth);
61 const G4double deltaMassRndmRange = maxDeltaMassRndm - ParticleTable::minDeltaMassRndm;
62// assert(deltaMassRndmRange>0.);
63
64 G4double y=ecm*ecm;
65 G4double q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
66 G4double q3=std::pow(std::sqrt(q2), 3.);
67 const G4double f3max=q3/(q3+5.832E6); // 5.832E6 = 180^3
68 G4double x;
69
70 G4int nTries = 0;
71 G4bool success = false;
72 while(!success) { /* Loop checking, 10.07.2015, D.Mancusi */
73 if(++nTries >= maxTries) {
74 INCL_WARN("NDeltaOmegaProductionChannel::sampleDeltaMass loop was stopped because maximum number of tries was reached. Minimum delta mass "
75 << ParticleTable::minDeltaMass << " MeV with CM energy " << ecm << " MeV may be unphysical." << '\n');
77 }
78
79 G4double rndm = ParticleTable::minDeltaMassRndm + Random::shoot() * deltaMassRndmRange;
80 y = std::tan(rndm);
82// assert(x>=ParticleTable::minDeltaMass && ecm >= x + ParticleTable::effectiveNucleonMass + 1.0);
83
84 // generation of the delta mass with the penetration factor
85 // (see prc56(1997)2431)
86 y=x*x;
87 q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
88 q3=std::pow(std::sqrt(q2), 3.);
89 const G4double f3=q3/(q3+5.832E6); // 5.832E6 = 180^3
90 rndm = Random::shoot();
91 if (rndm*f3max < f3)
92 success = true;
93 }
94 return x;
95 }
96
98
99/**
100*
101* Unlike NN -> NDelta, NN -> NDeltaOmega is drawn from a phase-space generator
102*
103**/
104
105 G4int is1=ParticleTable::getIsospin(particle1->getType());
106 G4int is2=ParticleTable::getIsospin(particle2->getType());
107
108 ParticleList list;
109 list.push_back(particle1);
110 list.push_back(particle2);
111
112// isospin Repartition of N and Delta;
113 G4double ecm = KinematicsUtils::totalEnergyInCM(particle1, particle2);
114 const G4int isospin = is1+is2;
115
116 G4double rndm = 0.0;
117 G4double xmdel = sampleDeltaMass(ecm);
118
119 G4int index2=0;
120 if (isospin == 0) { // pn case
121 rndm = Random::shoot();
122 if (rndm < 0.5) index2=1;
123 }
124
125 if (isospin == 0) {
126 if(index2 == 1) {
127 G4int isi=is1;
128 is1=is2;
129 is2=isi;
130 }
131// particle1->setHelicity(0.0);
132 } else {
133 rndm = Random::shoot();
134 if (rndm >= 0.25) {
135 is1=3*is1;
136 is2=-is2;
137 }
138// particle1->setHelicity(ctet*ctet);
139 }
140
142 particle1->setType(DeltaMinus);
143 } else if(is1 == ParticleTable::getIsospin(DeltaZero)) {
144 particle1->setType(DeltaZero);
145 } else if(is1 == ParticleTable::getIsospin(DeltaPlus)) {
146 particle1->setType(DeltaPlus);
147 } else if(is1 == ParticleTable::getIsospin(DeltaPlusPlus)) {
148 particle1->setType(DeltaPlusPlus);
149 }
150
152 particle2->setType(Proton);
153 } else if(is2 == ParticleTable::getIsospin(Neutron)) {
154 particle2->setType(Neutron);
155 }
156
157 if(particle1->isDelta()) particle1->setMass(xmdel);
158 if(particle2->isDelta()) particle2->setMass(xmdel);
159
160 const ThreeVector &rcolnucleon1 = particle1->getPosition();
161 const ThreeVector &rcolnucleon2 = particle2->getPosition();
162 const ThreeVector rcol = (rcolnucleon1+rcolnucleon2)*0.5;
163 const ThreeVector zero;
164 Particle *omega = new Particle(Omega,zero,rcol);
165 list.push_back(omega);
166 fs->addCreatedParticle(omega);
167
168 const G4double sqrtS = KinematicsUtils::totalEnergyInCM(particle1, particle2);
169 G4int biasIndex = ((Random::shoot()<0.5) ? 0 : 1);
170 PhaseSpaceGenerator::generateBiased(sqrtS, list, biasIndex, angularSlope);
171
172 const ThreeVector vz(0.0,0.0,1.0);
173 G4double ctet=(particle1->getMomentum().dot(vz))/particle1->getMomentum().mag();
174 if (isospin == 0)
175 particle1->setHelicity(0.0);
176 else
177 particle1->setHelicity(ctet*ctet);
178
179 fs->addModifiedParticle(particle1);
180 fs->addModifiedParticle(particle2);
181
182 }
183
184}
#define INCL_WARN(x)
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
void addModifiedParticle(Particle *p)
void addCreatedParticle(Particle *p)
void setMass(G4double mass)
void setHelicity(G4double h)
const G4INCL::ThreeVector & getPosition() const
const G4INCL::ThreeVector & getMomentum() const
G4INCL::ParticleType getType() const
void setType(ParticleType t)
G4bool isDelta() const
Is it a Delta?
G4double mag() const
G4double dot(const ThreeVector &v) const
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
const G4double effectiveDeltaWidth
const G4double effectiveDeltaMass
G4ThreadLocal G4double minDeltaMass
G4ThreadLocal G4double minDeltaMassRndm
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
const G4double effectiveNucleonMass
void generateBiased(const G4double sqrtS, ParticleList &particles, const size_t index, const G4double slope)
Generate a biased event in the CM system.
G4double shoot()
Definition: G4INCLRandom.cc:93