Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4LowEPPolarizedComptonModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25// ********************************************************************
26// *********************************************************************
27// | |
28// | G4LowEPPolarizedComptonModel-- Geant4 Monash University |
29// | polarised low energy Compton scattering model. |
30// | J. M. C. Brown, Monash University, Australia |
31// | |
32// | |
33// *********************************************************************
34// | |
35// | The following is a Geant4 class to simulate the process of |
36// | bound electron Compton scattering. General code structure is |
37// | based on G4LowEnergyCompton.cc and |
38// | G4LivermorePolarizedComptonModel.cc. |
39// | Algorithms for photon energy, and ejected Compton electron |
40// | direction taken from: |
41// | |
42// | J. M. C. Brown, M. R. Dimmock, J. E. Gillam and D. M. Paganin, |
43// | "A low energy bound atomic electron Compton scattering model |
44// | for Geant4", NIMB, Vol. 338, 77-88, 2014. |
45// | |
46// | The author acknowledges the work of the Geant4 collaboration |
47// | in developing the following algorithms that have been employed |
48// | or adapeted for the present software: |
49// | |
50// | # sampling of photon scattering angle, |
51// | # target element selection in composite materials, |
52// | # target shell selection in element, |
53// | # and sampling of bound electron momentum from Compton profiles. |
54// | |
55// *********************************************************************
56// | |
57// | History: |
58// | -------- |
59// | |
60// | Jan. 2015 JMCB - 1st Version based on G4LowEPPComptonModel |
61// | Feb. 2016 JMCB - Geant4 10.2 FPE fix for bug 1676 |
62// | Nov. 2016 JMCB - Polarisation tracking fix in collaboration |
63// | of Dr. Merlin Reynaard Kole, |
64// | University of Geneva |
65// | |
66// *********************************************************************
67
69#include "G4AutoLock.hh"
71#include "G4SystemOfUnits.hh"
72
73//****************************************************************************
74
75using namespace std;
76namespace { G4Mutex LowEPPolarizedComptonModelMutex = G4MUTEX_INITIALIZER; }
77
78
79G4PhysicsFreeVector* G4LowEPPolarizedComptonModel::data[] = {nullptr};
80G4ShellData* G4LowEPPolarizedComptonModel::shellData = nullptr;
81G4DopplerProfile* G4LowEPPolarizedComptonModel::profileData = nullptr;
82
83static const G4double ln10 = G4Log(10.);
84
86 const G4String& nam)
87 : G4VEmModel(nam),isInitialised(false)
88{
89 verboseLevel=1 ;
90 // Verbosity scale:
91 // 0 = nothing
92 // 1 = warning for energy non-conservation
93 // 2 = details of energy budget
94 // 3 = calculation of cross sections, file openings, sampling of atoms
95 // 4 = entering in methods
96
97 if( verboseLevel>1 ) {
98 G4cout << "Low energy photon Compton model is constructed " << G4endl;
99 }
100
101 //Mark this model as "applicable" for atomic deexcitation
103
104 fParticleChange = nullptr;
105 fAtomDeexcitation = nullptr;
106}
107
108//****************************************************************************
109
111{
112 if(IsMaster()) {
113 delete shellData;
114 shellData = nullptr;
115 delete profileData;
116 profileData = nullptr;
117 }
118}
119
120//****************************************************************************
121
123 const G4DataVector& cuts)
124{
125 if (verboseLevel > 1) {
126 G4cout << "Calling G4LowEPPolarizedComptonModel::Initialise()" << G4endl;
127 }
128
129 // Initialise element selector
130 if(IsMaster()) {
131 // Access to elements
132 const char* path = G4FindDataDir("G4LEDATA");
133
134 G4ProductionCutsTable* theCoupleTable =
136 G4int numOfCouples = (G4int)theCoupleTable->GetTableSize();
137
138 for(G4int i=0; i<numOfCouples; ++i) {
139 const G4Material* material =
140 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
141 const G4ElementVector* theElementVector = material->GetElementVector();
142 std::size_t nelm = material->GetNumberOfElements();
143
144 for (std::size_t j=0; j<nelm; ++j) {
145 G4int Z = G4lrint((*theElementVector)[j]->GetZ());
146 if(Z < 1) { Z = 1; }
147 else if(Z > maxZ){ Z = maxZ; }
148
149 if( (!data[Z]) ) { ReadData(Z, path); }
150 }
151 }
152
153 // For Doppler broadening
154 if(!shellData) {
155 shellData = new G4ShellData();
156 shellData->SetOccupancyData();
157 G4String file = "/doppler/shell-doppler";
158 shellData->LoadData(file);
159 }
160 if(!profileData) { profileData = new G4DopplerProfile(); }
161
162 InitialiseElementSelectors(particle, cuts);
163 }
164
165 if (verboseLevel > 2) {
166 G4cout << "Loaded cross section files" << G4endl;
167 }
168
169 if( verboseLevel>1 ) {
170 G4cout << "G4LowEPPolarizedComptonModel is initialized " << G4endl
171 << "Energy range: "
172 << LowEnergyLimit() / eV << " eV - "
173 << HighEnergyLimit() / GeV << " GeV"
174 << G4endl;
175 }
176
177 if(isInitialised) { return; }
178
179 fParticleChange = GetParticleChangeForGamma();
180 fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
181 isInitialised = true;
182}
183
184//****************************************************************************
185
187 G4VEmModel* masterModel)
188{
190}
191
192//****************************************************************************
193
194void G4LowEPPolarizedComptonModel::ReadData(std::size_t Z, const char* path)
195{
196 if (verboseLevel > 1)
197 {
198 G4cout << "G4LowEPPolarizedComptonModel::ReadData()"
199 << G4endl;
200 }
201 if(data[Z]) { return; }
202 const char* datadir = path;
203 if(!datadir)
204 {
205 datadir = G4FindDataDir("G4LEDATA");
206 if(!datadir)
207 {
208 G4Exception("G4LowEPPolarizedComptonModel::ReadData()",
209 "em0006",FatalException,
210 "Environment variable G4LEDATA not defined");
211 return;
212 }
213 }
214
215 data[Z] = new G4PhysicsFreeVector();
216
217 std::ostringstream ost;
218 ost << datadir << "/livermore/comp/ce-cs-" << Z <<".dat";
219 std::ifstream fin(ost.str().c_str());
220
221 if( !fin.is_open())
222 {
224 ed << "G4LowEPPolarizedComptonModel data file <" << ost.str().c_str()
225 << "> is not opened!" << G4endl;
226 G4Exception("G4LowEPPolarizedComptonModel::ReadData()",
227 "em0003",FatalException,
228 ed,"G4LEDATA version should be G4EMLOW6.34 or later");
229 return;
230 } else {
231 if(verboseLevel > 3) {
232 G4cout << "File " << ost.str()
233 << " is opened by G4LowEPPolarizedComptonModel" << G4endl;
234 }
235 data[Z]->Retrieve(fin, true);
236 data[Z]->ScaleVector(MeV, MeV*barn);
237 }
238 fin.close();
239}
240
241//****************************************************************************
242
245 G4double GammaEnergy,
248{
249 if (verboseLevel > 3) {
250 G4cout << "G4LowEPPolarizedComptonModel::ComputeCrossSectionPerAtom()"
251 << G4endl;
252 }
253 G4double cs = 0.0;
254
255 if (GammaEnergy < LowEnergyLimit()) { return 0.0; }
256
257 G4int intZ = G4lrint(Z);
258 if(intZ < 1 || intZ > maxZ) { return cs; }
259
260 G4PhysicsFreeVector* pv = data[intZ];
261
262 // if element was not initialised
263 // do initialisation safely for MT mode
264 if(!pv)
265 {
266 InitialiseForElement(0, intZ);
267 pv = data[intZ];
268 if(!pv) { return cs; }
269 }
270
271 G4int n = G4int(pv->GetVectorLength() - 1);
272 G4double e1 = pv->Energy(0);
273 G4double e2 = pv->Energy(n);
274
275 if(GammaEnergy <= e1) { cs = GammaEnergy/(e1*e1)*pv->Value(e1); }
276 else if(GammaEnergy <= e2) { cs = pv->Value(GammaEnergy)/GammaEnergy; }
277 else if(GammaEnergy > e2) { cs = pv->Value(e2)/GammaEnergy; }
278
279 return cs;
280}
281
282//****************************************************************************
283
284void G4LowEPPolarizedComptonModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
285 const G4MaterialCutsCouple* couple,
286 const G4DynamicParticle* aDynamicGamma,
288{
289
290 //Determine number of digits (in decimal base) that G4double can accurately represent
291 G4double g4d_order = G4double(numeric_limits<G4double>::digits10);
292 G4double g4d_limit = std::pow(10.,-g4d_order);
293
294 // The scattered gamma energy is sampled according to Klein - Nishina formula.
295 // then accepted or rejected depending on the Scattering Function multiplied
296 // by factor from Klein - Nishina formula.
297 // Expression of the angular distribution as Klein Nishina
298 // angular and energy distribution and Scattering fuctions is taken from
299 // D. E. Cullen "A simple model of photon transport" Nucl. Instr. Meth.
300 // Phys. Res. B 101 (1995). Method of sampling with form factors is different
301 // data are interpolated while in the article they are fitted.
302 // Reference to the article is from J. Stepanek New Photon, Positron
303 // and Electron Interaction Data for GEANT in Energy Range from 1 eV to 10
304 // TeV (draft).
305 // The random number techniques of Butcher & Messel are used
306 // (Nucl Phys 20(1960),15).
307
308 G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy()/MeV;
309
310 if (verboseLevel > 3) {
311 G4cout << "G4LowEPPolarizedComptonModel::SampleSecondaries() E(MeV)= "
312 << photonEnergy0/MeV << " in " << couple->GetMaterial()->GetName()
313 << G4endl;
314 }
315 // do nothing below the threshold
316 // should never get here because the XS is zero below the limit
317 if (photonEnergy0 < LowEnergyLimit())
318 return ;
319
320 G4double e0m = photonEnergy0 / electron_mass_c2 ;
321 G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
322
323 // Polarisation: check orientation of photon propagation direction and polarisation
324 // Fix if needed
325
326 G4ThreeVector photonPolarization0 = aDynamicGamma->GetPolarization();
327 // Check if polarisation vector is perpendicular and fix if not
328
329 if (!(photonPolarization0.isOrthogonal(photonDirection0, 1e-6))||(photonPolarization0.mag()==0))
330 {
331 photonPolarization0 = GetRandomPolarization(photonDirection0);
332 }
333 else
334 {
335 if ((photonPolarization0.howOrthogonal(photonDirection0) !=0) && (photonPolarization0.howOrthogonal(photonDirection0) > g4d_limit))
336 {
337 photonPolarization0 = GetPerpendicularPolarization(photonDirection0,photonPolarization0);
338 }
339 }
340
341 // Select randomly one element in the current material
342 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
343 const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0);
344 G4int Z = (G4int)elm->GetZ();
345
346 G4double LowEPPCepsilon0 = 1. / (1. + 2. * e0m);
347 G4double LowEPPCepsilon0Sq = LowEPPCepsilon0 * LowEPPCepsilon0;
348 G4double alpha1 = -std::log(LowEPPCepsilon0);
349 G4double alpha2 = 0.5 * (1. - LowEPPCepsilon0Sq);
350
351 G4double wlPhoton = h_Planck*c_light/photonEnergy0;
352
353 // Sample the energy of the scattered photon
354 G4double LowEPPCepsilon;
355 G4double LowEPPCepsilonSq;
356 G4double oneCosT;
357 G4double sinT2;
358 G4double gReject;
359
360 if (verboseLevel > 3) {
361 G4cout << "Started loop to sample gamma energy" << G4endl;
362 }
363
364 do
365 {
366 if ( alpha1/(alpha1+alpha2) > G4UniformRand())
367 {
368 LowEPPCepsilon = G4Exp(-alpha1 * G4UniformRand());
369 LowEPPCepsilonSq = LowEPPCepsilon * LowEPPCepsilon;
370 }
371 else
372 {
373 LowEPPCepsilonSq = LowEPPCepsilon0Sq + (1. - LowEPPCepsilon0Sq) * G4UniformRand();
374 LowEPPCepsilon = std::sqrt(LowEPPCepsilonSq);
375 }
376
377 oneCosT = (1. - LowEPPCepsilon) / ( LowEPPCepsilon * e0m);
378 sinT2 = oneCosT * (2. - oneCosT);
379 G4double x = std::sqrt(oneCosT/2.) / (wlPhoton/cm);
380 G4double scatteringFunction = ComputeScatteringFunction(x, Z);
381 gReject = (1. - LowEPPCepsilon * sinT2 / (1. + LowEPPCepsilonSq)) * scatteringFunction;
382
383 } while(gReject < G4UniformRand()*Z);
384
385 G4double cosTheta = 1. - oneCosT;
386 G4double sinTheta = std::sqrt(sinT2);
387 G4double phi = SetPhi(LowEPPCepsilon,sinT2);
388 G4double dirx = sinTheta * std::cos(phi);
389 G4double diry = sinTheta * std::sin(phi);
390 G4double dirz = cosTheta ;
391
392 // Set outgoing photon polarization
393
394 G4ThreeVector photonPolarization1 = SetNewPolarization(LowEPPCepsilon,
395 sinT2,
396 phi,
397 cosTheta);
398
399 // Scatter photon energy and Compton electron direction - Method based on:
400 // J. M. C. Brown, M. R. Dimmock, J. E. Gillam and D. M. Paganin'
401 // "A low energy bound atomic electron Compton scattering model for Geant4"
402 // NIMB, Vol. 338, 77-88, 2014.
403
404 // Set constants and initialize scattering parameters
405 const G4double vel_c = c_light / (m/s);
406 const G4double momentum_au_to_nat = halfpi* hbar_Planck / Bohr_radius / (kg*m/s);
407 const G4double e_mass_kg = electron_mass_c2 / c_squared / kg ;
408
409 const G4int maxDopplerIterations = 1000;
410 G4double bindingE = 0.;
411 G4double pEIncident = photonEnergy0 ;
412 G4double pERecoil = -1.;
413 G4double eERecoil = -1.;
414 G4double e_alpha =0.;
415 G4double e_beta = 0.;
416
417 G4double CE_emission_flag = 0.;
418 G4double ePAU = -1;
419 G4int shellIdx = 0;
420 G4double u_temp = 0;
421 G4double cosPhiE =0;
422 G4double sinThetaE =0;
423 G4double cosThetaE =0;
424 G4int iteration = 0;
425
426 if (verboseLevel > 3) {
427 G4cout << "Started loop to sample photon energy and electron direction" << G4endl;
428 }
429
430 do{
431 // ******************************************
432 // | Determine scatter photon energy |
433 // ******************************************
434 do
435 {
436 iteration++;
437
438 // ********************************************
439 // | Sample bound electron information |
440 // ********************************************
441
442 // Select shell based on shell occupancy
443 shellIdx = shellData->SelectRandomShell(Z);
444 bindingE = shellData->BindingEnergy(Z,shellIdx)/MeV;
445
446 // Randomly sample bound electron momentum (memento: the data set is in Atomic Units)
447 ePAU = profileData->RandomSelectMomentum(Z,shellIdx);
448
449 // Convert to SI units
450 G4double ePSI = ePAU * momentum_au_to_nat;
451
452 //Calculate bound electron velocity and normalise to natural units
453 u_temp = sqrt( ((ePSI*ePSI)*(vel_c*vel_c)) / ((e_mass_kg*e_mass_kg)*(vel_c*vel_c)+(ePSI*ePSI)) )/vel_c;
454
455 // Sample incident electron direction, amorphous material, to scattering photon scattering plane
456 e_alpha = pi*G4UniformRand();
457 e_beta = twopi*G4UniformRand();
458
459 // Total energy of system
460 G4double eEIncident = electron_mass_c2 / sqrt( 1 - (u_temp*u_temp));
461 G4double systemE = eEIncident + pEIncident;
462
463 G4double gamma_temp = 1.0 / sqrt( 1 - (u_temp*u_temp));
464 G4double numerator = gamma_temp*electron_mass_c2*(1 - u_temp * std::cos(e_alpha));
465 G4double subdenom1 = u_temp*cosTheta*std::cos(e_alpha);
466 G4double subdenom2 = u_temp*sinTheta*std::sin(e_alpha)*std::cos(e_beta);
467 G4double denominator = (1.0 - cosTheta) + (gamma_temp*electron_mass_c2*(1 - subdenom1 - subdenom2) / pEIncident);
468 pERecoil = (numerator/denominator);
469 eERecoil = systemE - pERecoil;
470 CE_emission_flag = pEIncident - pERecoil;
471 } while ( (iteration <= maxDopplerIterations) && (CE_emission_flag < bindingE));
472
473 // End of recalculation of photon energy with Doppler broadening
474 // *******************************************************
475 // | Determine ejected Compton electron direction |
476 // *******************************************************
477
478 // Calculate velocity of ejected Compton electron
479
480 G4double a_temp = eERecoil / electron_mass_c2;
481 G4double u_p_temp = sqrt(1 - (1 / (a_temp*a_temp)));
482
483 // Coefficients and terms from simulatenous equations
484 G4double sinAlpha = std::sin(e_alpha);
485 G4double cosAlpha = std::cos(e_alpha);
486 G4double sinBeta = std::sin(e_beta);
487 G4double cosBeta = std::cos(e_beta);
488
489 G4double gamma = 1.0 / sqrt(1 - (u_temp*u_temp));
490 G4double gamma_p = 1.0 / sqrt(1 - (u_p_temp*u_p_temp));
491
492 G4double var_A = pERecoil*u_p_temp*sinTheta;
493 G4double var_B = u_p_temp* (pERecoil*cosTheta-pEIncident);
494 G4double var_C = (pERecoil-pEIncident) - ( (pERecoil*pEIncident) / (gamma_p*electron_mass_c2))*(1 - cosTheta);
495
496 G4double var_D1 = gamma*electron_mass_c2*pERecoil;
497 G4double var_D2 = (1 - (u_temp*cosTheta*cosAlpha) - (u_temp*sinTheta*cosBeta*sinAlpha));
498 G4double var_D3 = ((electron_mass_c2*electron_mass_c2)*(gamma*gamma_p - 1)) - (gamma_p*electron_mass_c2*pERecoil);
499 G4double var_D = var_D1*var_D2 + var_D3;
500
501 G4double var_E1 = ((gamma*gamma_p)*(electron_mass_c2*electron_mass_c2)*(u_temp*u_p_temp)*cosAlpha);
502 G4double var_E2 = gamma_p*electron_mass_c2*pERecoil*u_p_temp*cosTheta;
503 G4double var_E = var_E1 - var_E2;
504
505 G4double var_F1 = ((gamma*gamma_p)*(electron_mass_c2*electron_mass_c2)*(u_temp*u_p_temp)*cosBeta*sinAlpha);
506 G4double var_F2 = (gamma_p*electron_mass_c2*pERecoil*u_p_temp*sinTheta);
507 G4double var_F = var_F1 - var_F2;
508
509 G4double var_G = (gamma*gamma_p)*(electron_mass_c2*electron_mass_c2)*(u_temp*u_p_temp)*sinBeta*sinAlpha;
510
511 // Two equations form a quadratic form of Wx^2 + Yx + Z = 0
512 // Coefficents and solution to quadratic
513 G4double var_W1 = (var_F*var_B - var_E*var_A)*(var_F*var_B - var_E*var_A);
514 G4double var_W2 = (var_G*var_G)*(var_A*var_A) + (var_G*var_G)*(var_B*var_B);
515 G4double var_W = var_W1 + var_W2;
516
517 G4double var_Y = 2.0*(((var_A*var_D-var_F*var_C)*(var_F*var_B-var_E*var_A)) - ((var_G*var_G)*var_B*var_C));
518
519 G4double var_Z1 = (var_A*var_D - var_F*var_C)*(var_A*var_D - var_F*var_C);
520 G4double var_Z2 = (var_G*var_G)*(var_C*var_C) - (var_G*var_G)*(var_A*var_A);
521 G4double var_Z = var_Z1 + var_Z2;
522 G4double diff1 = var_Y*var_Y;
523 G4double diff2 = 4*var_W*var_Z;
524 G4double diff = diff1 - diff2;
525
526 // Check if diff is less than zero, if so ensure it is due to FPE
527 //Confirm that diff less than zero is due FPE, i.e if abs of diff / diff1 and diff/ diff2 is less
528 //than 10^(-g4d_order), then set diff to zero
529
530 if ((diff < 0.0) && (abs(diff / diff1) < g4d_limit) && (abs(diff / diff2) < g4d_limit) )
531 {
532 diff = 0.0;
533 }
534
535 // Plus and minus of quadratic
536 G4double X_p = (-var_Y + sqrt (diff))/(2*var_W);
537 G4double X_m = (-var_Y - sqrt (diff))/(2*var_W);
538
539 // Floating point precision protection
540 // Check if X_p and X_m are greater than or less than 1 or -1, if so clean up FPE
541 // Issue due to propagation of FPE and only impacts 8th sig fig onwards
542 if(X_p >1){X_p=1;} if(X_p<-1){X_p=-1;}
543 if(X_m >1){X_m=1;} if(X_m<-1){X_m=-1;}
544 // End of FP protection
545
546 G4double ThetaE = 0.;
547
548 // Randomly sample one of the two possible solutions and determin theta angle of ejected Compton electron
549 G4double sol_select = G4UniformRand();
550
551 if (sol_select < 0.5)
552 {
553 ThetaE = std::acos(X_p);
554 }
555 if (sol_select > 0.5)
556 {
557 ThetaE = std::acos(X_m);
558 }
559
560 cosThetaE = std::cos(ThetaE);
561 sinThetaE = std::sin(ThetaE);
562 G4double Theta = std::acos(cosTheta);
563
564 //Calculate electron Phi
565 G4double iSinThetaE = std::sqrt(1+std::tan((pi/2.0)-ThetaE)*std::tan((pi/2.0)-ThetaE));
566 G4double iSinTheta = std::sqrt(1+std::tan((pi/2.0)-Theta)*std::tan((pi/2.0)-Theta));
567 G4double ivar_A = iSinTheta/ (pERecoil*u_p_temp);
568 // Trigs
569 cosPhiE = (var_C - var_B*cosThetaE)*(ivar_A*iSinThetaE);
570 // End of calculation of ejection Compton electron direction
571 //Fix for floating point errors
572 } while ( (iteration <= maxDopplerIterations) && (abs(cosPhiE) > 1));
573
574 // Revert to original if maximum number of iterations threshold has been reached
575 if (iteration >= maxDopplerIterations)
576 {
577 pERecoil = photonEnergy0 ;
578 bindingE = 0.;
579 dirx=0.0;
580 diry=0.0;
581 dirz=1.0;
582 }
583
584 // Set "scattered" photon direction and energy
585 G4ThreeVector photonDirection1(dirx,diry,dirz);
586 SystemOfRefChange(photonDirection0,photonDirection1,
587 photonPolarization0,photonPolarization1);
588
589 if (pERecoil > 0.)
590 {
591 fParticleChange->SetProposedKineticEnergy(pERecoil) ;
592 fParticleChange->ProposeMomentumDirection(photonDirection1) ;
593 fParticleChange->ProposePolarization(photonPolarization1);
594
595 // Set ejected Compton electron direction and energy
596 G4double PhiE = std::acos(cosPhiE);
597 G4double eDirX = sinThetaE * std::cos(phi+PhiE);
598 G4double eDirY = sinThetaE * std::sin(phi+PhiE);
599 G4double eDirZ = cosThetaE;
600
601 G4double eKineticEnergy = pEIncident - pERecoil - bindingE;
602
603 G4ThreeVector eDirection(eDirX,eDirY,eDirZ);
604 SystemOfRefChangeElect(photonDirection0,eDirection,
605 photonPolarization0);
606
608 eDirection,eKineticEnergy) ;
609 fvect->push_back(dp);
610 }
611 else
612 {
613 fParticleChange->SetProposedKineticEnergy(0.);
614 fParticleChange->ProposeTrackStatus(fStopAndKill);
615 }
616
617 // sample deexcitation
618 //
619 if (verboseLevel > 3) {
620 G4cout << "Started atomic de-excitation " << fAtomDeexcitation << G4endl;
621 }
622
623 if(fAtomDeexcitation && iteration < maxDopplerIterations) {
624 G4int index = couple->GetIndex();
625 if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
626 std::size_t nbefore = fvect->size();
628 const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
629 fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
630 std::size_t nafter = fvect->size();
631 if(nafter > nbefore) {
632 for (std::size_t i=nbefore; i<nafter; ++i) {
633 //Check if there is enough residual energy
634 if (bindingE >= ((*fvect)[i])->GetKineticEnergy())
635 {
636 //Ok, this is a valid secondary: keep it
637 bindingE -= ((*fvect)[i])->GetKineticEnergy();
638 }
639 else
640 {
641 //Invalid secondary: not enough energy to create it!
642 //Keep its energy in the local deposit
643 delete (*fvect)[i];
644 (*fvect)[i]=nullptr;
645 }
646 }
647 }
648 }
649 }
650
651 //This should never happen
652 if(bindingE < 0.0)
653 G4Exception("G4LowEPPolarizedComptonModel::SampleSecondaries()",
654 "em2051",FatalException,"Negative local energy deposit");
655
656 fParticleChange->ProposeLocalEnergyDeposit(bindingE);
657}
658
659//****************************************************************************
660
662G4LowEPPolarizedComptonModel::ComputeScatteringFunction(G4double x, G4int Z)
663{
664 G4double value = Z;
665 if (x <= ScatFuncFitParam[Z][2]) {
666
667 G4double lgq = G4Log(x)/ln10;
668
669 if (lgq < ScatFuncFitParam[Z][1]) {
670 value = ScatFuncFitParam[Z][3] + lgq*ScatFuncFitParam[Z][4];
671 } else {
672 value = ScatFuncFitParam[Z][5] + lgq*ScatFuncFitParam[Z][6] +
673 lgq*lgq*ScatFuncFitParam[Z][7] + lgq*lgq*lgq*ScatFuncFitParam[Z][8];
674 }
675 value = G4Exp(value*ln10);
676 }
677 return value;
678}
679
680
681//****************************************************************************
682
683void
685 G4int Z)
686{
687 G4AutoLock l(&LowEPPolarizedComptonModelMutex);
688 if(!data[Z]) { ReadData(Z); }
689 l.unlock();
690}
691
692//****************************************************************************
693
694//Fitting data to compute scattering function
695const G4double G4LowEPPolarizedComptonModel::ScatFuncFitParam[101][9] = {
696 { 0, 0., 0., 0., 0., 0., 0., 0., 0.},
697 { 1, 6.673, 1.49968E+08, -14.352, 1.999, -143.374, 50.787, -5.951, 0.2304418},
698 { 2, 6.500, 2.50035E+08, -14.215, 1.970, -53.649, 13.892, -0.948, 0.006996759},
699 { 3, 6.551, 3.99945E+08, -13.555, 1.993, -62.090, 21.462, -2.453, 0.093416},
700 { 4, 6.500, 5.00035E+08, -13.746, 1.998, -127.906, 46.491, -5.614, 0.2262103},
701 { 5, 6.500, 5.99791E+08, -13.800, 1.998, -131.153, 47.132, -5.619, 0.2233819},
702 { 6, 6.708, 6.99842E+08, -13.885, 1.999, -128.143, 45.379, -5.325, 0.2083009},
703 { 7, 6.685, 7.99834E+08, -13.885, 2.000, -131.048, 46.314, -5.421, 0.2114925},
704 { 8, 6.669, 7.99834E+08, -13.962, 2.001, -128.225, 44.818, -5.183, 0.1997155},
705 { 9, 6.711, 7.99834E+08, -13.999, 2.000, -122.112, 42.103, -4.796, 0.1819099},
706 { 10, 6.702, 7.99834E+08, -14.044, 1.999, -110.143, 37.225, -4.143, 0.1532094},
707 { 11, 6.425, 1.00000E+09, -13.423, 1.993, -41.137, 12.313, -1.152, 0.03384553},
708 { 12, 6.542, 1.00000E+09, -13.389, 1.997, -53.549, 17.420, -1.840, 0.06431849},
709 { 13, 6.570, 1.49968E+09, -13.401, 1.997, -66.243, 22.297, -2.460, 0.09045854},
710 { 14, 6.364, 1.49968E+09, -13.452, 1.999, -78.271, 26.757, -3.008, 0.1128195},
711 { 15, 6.500, 1.49968E+09, -13.488, 1.998, -85.069, 29.164, -3.291, 0.1239113},
712 { 16, 6.500, 1.49968E+09, -13.532, 1.998, -93.640, 32.274, -3.665, 0.1388633},
713 { 17, 6.500, 1.49968E+09, -13.584, 2.000, -98.534, 33.958, -3.857, 0.1461557},
714 { 18, 6.500, 1.49968E+09, -13.618, 1.999, -100.077, 34.379, -3.891, 0.1468902},
715 { 19, 6.500, 1.99986E+09, -13.185, 1.992, -53.819, 17.528, -1.851, 0.0648722},
716 { 20, 6.490, 1.99986E+09, -13.123, 1.993, -52.221, 17.169, -1.832, 0.06502094},
717 { 21, 6.498, 1.99986E+09, -13.157, 1.994, -55.365, 18.276, -1.961, 0.07002778},
718 { 22, 6.495, 1.99986E+09, -13.183, 1.994, -57.412, 18.957, -2.036, 0.07278856},
719 { 23, 6.487, 1.99986E+09, -13.216, 1.995, -58.478, 19.270, -2.065, 0.07362722},
720 { 24, 6.500, 1.99986E+09, -13.330, 1.997, -62.192, 20.358, -2.167, 0.07666583},
721 { 25, 6.488, 1.99986E+09, -13.277, 1.997, -58.007, 18.924, -2.003, 0.0704305},
722 { 26, 6.500, 5.00035E+09, -13.292, 1.997, -61.176, 20.067, -2.141, 0.0760269},
723 { 27, 6.500, 5.00035E+09, -13.321, 1.998, -61.909, 20.271, -2.159, 0.07653559},
724 { 28, 6.500, 5.00035E+09, -13.340, 1.998, -62.402, 20.391, -2.167, 0.07664243},
725 { 29, 6.500, 5.00035E+09, -13.439, 1.998, -67.305, 21.954, -2.331, 0.0823267},
726 { 30, 6.500, 5.00035E+09, -13.383, 1.999, -62.064, 20.136, -2.122, 0.07437589},
727 { 31, 6.500, 5.00035E+09, -13.349, 1.997, -61.068, 19.808, -2.086, 0.07307488},
728 { 32, 6.500, 5.00035E+09, -13.373, 1.999, -63.126, 20.553, -2.175, 0.07660222},
729 { 33, 6.500, 5.00035E+09, -13.395, 1.999, -65.674, 21.445, -2.278, 0.08054694},
730 { 34, 6.500, 5.00035E+09, -13.417, 1.999, -69.457, 22.811, -2.442, 0.08709536},
731 { 35, 6.500, 5.00035E+09, -13.442, 2.000, -72.283, 23.808, -2.558, 0.09156808},
732 { 36, 6.500, 5.00035E+09, -13.451, 1.998, -74.696, 24.641, -2.653, 0.09516597},
733 { 37, 6.500, 5.00035E+09, -13.082, 1.991, -46.235, 14.519, -1.458, 0.04837659},
734 { 38, 6.465, 5.00035E+09, -13.022, 1.993, -41.784, 13.065, -1.300, 0.04267703},
735 { 39, 6.492, 5.00035E+09, -13.043, 1.994, -44.609, 14.114, -1.429, 0.0479348},
736 { 40, 6.499, 5.00035E+09, -13.064, 1.994, -47.142, 15.019, -1.536, 0.0521347},
737 { 41, 6.384, 5.00035E+09, -13.156, 1.996, -53.114, 17.052, -1.766, 0.06079426},
738 { 42, 6.500, 5.00035E+09, -13.176, 1.996, -54.590, 17.550, -1.822, 0.06290335},
739 { 43, 6.500, 5.00035E+09, -13.133, 1.997, -51.272, 16.423, -1.694, 0.05806108},
740 { 44, 6.500, 5.00035E+09, -13.220, 1.996, -58.314, 18.839, -1.969, 0.0684608},
741 { 45, 6.500, 5.00035E+09, -13.246, 1.998, -59.674, 19.295, -2.020, 0.07037294},
742 { 46, 6.500, 5.00035E+09, -13.407, 1.999, -72.228, 23.693, -2.532, 0.09017969},
743 { 47, 6.500, 5.00035E+09, -13.277, 1.998, -60.890, 19.647, -2.053, 0.07138694},
744 { 48, 6.500, 5.00035E+09, -13.222, 1.998, -56.152, 18.002, -1.863, 0.06410123},
745 { 49, 6.500, 5.00035E+09, -13.199, 1.997, -56.208, 18.052, -1.872, 0.06456884},
746 { 50, 6.500, 5.00035E+09, -13.215, 1.998, -58.478, 18.887, -1.973, 0.06860356},
747 { 51, 6.500, 5.00035E+09, -13.230, 1.998, -60.708, 19.676, -2.066, 0.07225841},
748 { 52, 6.500, 7.99834E+09, -13.246, 1.998, -63.341, 20.632, -2.180, 0.0767412},
749 { 53, 6.500, 5.00035E+09, -13.262, 1.998, -66.339, 21.716, -2.310, 0.08191981},
750 { 54, 6.500, 7.99834E+09, -13.279, 1.998, -67.649, 22.151, -2.357, 0.08357825},
751 { 55, 6.500, 5.00035E+09, -12.951, 1.990, -45.302, 14.219, -1.423, 0.04712317},
752 { 56, 6.425, 5.00035E+09, -12.882, 1.992, -39.825, 12.363, -1.214, 0.03931009},
753 { 57, 6.466, 2.82488E+09, -12.903, 1.992, -38.952, 11.982, -1.160, 0.03681554},
754 { 58, 6.451, 5.00035E+09, -12.915, 1.993, -41.959, 13.118, -1.302, 0.04271291},
755 { 59, 6.434, 5.00035E+09, -12.914, 1.993, -40.528, 12.555, -1.230, 0.03971407},
756 { 60, 6.444, 5.00035E+09, -12.922, 1.992, -39.986, 12.329, -1.200, 0.03843737},
757 { 61, 6.414, 7.99834E+09, -12.930, 1.993, -42.756, 13.362, -1.327, 0.0436124},
758 { 62, 6.420, 7.99834E+09, -12.938, 1.992, -42.682, 13.314, -1.319, 0.04322509},
759 { 63, 6.416, 7.99834E+09, -12.946, 1.993, -42.399, 13.185, -1.301, 0.04243861},
760 { 64, 6.443, 7.99834E+09, -12.963, 1.993, -43.226, 13.475, -1.335, 0.04377341},
761 { 65, 6.449, 7.99834E+09, -12.973, 1.993, -43.232, 13.456, -1.330, 0.04347536},
762 { 66, 6.419, 7.99834E+09, -12.966, 1.993, -42.047, 12.990, -1.270, 0.04095499},
763 { 67, 6.406, 7.99834E+09, -12.976, 1.993, -42.405, 13.106, -1.283, 0.04146024},
764 { 68, 6.424, 7.99834E+09, -12.986, 1.993, -41.974, 12.926, -1.259, 0.040435},
765 { 69, 6.417, 7.99834E+09, -12.989, 1.993, -42.132, 12.967, -1.262, 0.04048908},
766 { 70, 6.405, 7.99834E+09, -13.000, 1.994, -42.582, 13.122, -1.280, 0.04119599},
767 { 71, 6.449, 7.99834E+09, -13.015, 1.994, -42.586, 13.115, -1.278, 0.04107587},
768 { 72, 6.465, 7.99834E+09, -13.030, 1.994, -43.708, 13.509, -1.324, 0.04286491},
769 { 73, 6.447, 7.99834E+09, -13.048, 1.996, -44.838, 13.902, -1.369, 0.04457132},
770 { 74, 6.452, 7.99834E+09, -13.073, 1.997, -45.545, 14.137, -1.395, 0.04553459},
771 { 75, 6.432, 7.99834E+09, -13.082, 1.997, -46.426, 14.431, -1.428, 0.04678218},
772 { 76, 6.439, 7.99834E+09, -13.100, 1.997, -47.513, 14.806, -1.471, 0.04842566},
773 { 77, 6.432, 7.99834E+09, -13.110, 1.997, -48.225, 15.042, -1.497, 0.04938364},
774 { 78, 6.500, 7.99834E+09, -13.185, 1.997, -53.256, 16.739, -1.687, 0.05645173},
775 { 79, 6.500, 7.99834E+09, -13.200, 1.997, -53.900, 16.946, -1.709, 0.05723134},
776 { 80, 6.500, 7.99834E+09, -13.156, 1.998, -49.801, 15.536, -1.547, 0.05103522},
777 { 81, 6.500, 7.99834E+09, -13.128, 1.997, -49.651, 15.512, -1.548, 0.05123203},
778 { 82, 6.500, 7.99834E+09, -13.134, 1.997, -51.021, 16.018, -1.609, 0.05364831},
779 { 83, 6.500, 7.99834E+09, -13.148, 1.998, -52.693, 16.612, -1.679, 0.05638698},
780 { 84, 6.500, 7.99834E+09, -13.161, 1.998, -54.415, 17.238, -1.754, 0.05935566},
781 { 85, 6.500, 7.99834E+09, -13.175, 1.998, -56.083, 17.834, -1.824, 0.06206068},
782 { 86, 6.500, 7.99834E+09, -13.189, 1.998, -57.860, 18.463, -1.898, 0.0649633},
783 { 87, 6.500, 7.99834E+09, -12.885, 1.990, -39.973, 12.164, -1.162, 0.0364598},
784 { 88, 6.417, 7.99834E+09, -12.816, 1.991, -34.591, 10.338, -0.956, 0.0287409},
785 { 89, 6.442, 7.99834E+09, -12.831, 1.992, -36.002, 10.867, -1.021, 0.03136835},
786 { 90, 6.463, 7.99834E+09, -12.850, 1.993, -37.660, 11.475, -1.095, 0.03435334},
787 { 91, 6.447, 7.99834E+09, -12.852, 1.993, -37.268, 11.301, -1.071, 0.0330539},
788 { 92, 6.439, 7.99834E+09, -12.858, 1.993, -37.695, 11.438, -1.085, 0.03376669},
789 { 93, 6.437, 1.00000E+10, -12.866, 1.993, -39.010, 11.927, -1.146, 0.03630848},
790 { 94, 6.432, 7.99834E+09, -12.862, 1.993, -37.192, 11.229, -1.057, 0.0325621},
791 { 95, 6.435, 7.99834E+09, -12.869, 1.993, -37.589, 11.363, -1.072, 0.03312393},
792 { 96, 6.449, 1.00000E+10, -12.886, 1.993, -39.573, 12.095, -1.162, 0.03680527},
793 { 97, 6.446, 1.00000E+10, -12.892, 1.993, -40.007, 12.242, -1.178, 0.03737377},
794 { 98, 6.421, 1.00000E+10, -12.887, 1.993, -39.509, 12.041, -1.152, 0.03629023},
795 { 99, 6.414, 1.00000E+10, -12.894, 1.993, -39.939, 12.183, -1.168, 0.03690464},
796 {100, 6.412, 1.00000E+10, -12.900, 1.993, -39.973, 12.180, -1.166, 0.036773}
797};
798
799//****************************************************************************
800
801//Supporting functions for photon polarisation effects
802G4double G4LowEPPolarizedComptonModel::SetPhi(G4double energyRate,
803 G4double sinT2)
804{
805 G4double rand1;
806 G4double rand2;
807 G4double phiProbability;
808 G4double phi;
809 G4double a, b;
810
811 do
812 {
813 rand1 = G4UniformRand();
814 rand2 = G4UniformRand();
815 phiProbability=0.;
816 phi = twopi*rand1;
817
818 a = 2*sinT2;
819 b = energyRate + 1/energyRate;
820
821 phiProbability = 1 - (a/b)*(std::cos(phi)*std::cos(phi));
822 }
823 while ( rand2 > phiProbability );
824 return phi;
825}
826
827//****************************************************************************
828
829G4ThreeVector G4LowEPPolarizedComptonModel::SetPerpendicularVector(G4ThreeVector& a)
830{
831 G4double dx = a.x();
832 G4double dy = a.y();
833 G4double dz = a.z();
834 G4double x = dx < 0.0 ? -dx : dx;
835 G4double y = dy < 0.0 ? -dy : dy;
836 G4double z = dz < 0.0 ? -dz : dz;
837 if (x < y) {
838 return x < z ? G4ThreeVector(-dy,dx,0) : G4ThreeVector(0,-dz,dy);
839 }else{
840 return y < z ? G4ThreeVector(dz,0,-dx) : G4ThreeVector(-dy,dx,0);
841 }
842}
843
844//****************************************************************************
845
846G4ThreeVector G4LowEPPolarizedComptonModel::GetRandomPolarization(G4ThreeVector& direction0)
847{
848 G4ThreeVector d0 = direction0.unit();
849 G4ThreeVector a1 = SetPerpendicularVector(d0); //different orthogonal
850 G4ThreeVector a0 = a1.unit(); // unit vector
851
852 G4double rand1 = G4UniformRand();
853
854 G4double angle = twopi*rand1; // random polar angle
855 G4ThreeVector b0 = d0.cross(a0); // cross product
856
858
859 c.setX(std::cos(angle)*(a0.x())+std::sin(angle)*b0.x());
860 c.setY(std::cos(angle)*(a0.y())+std::sin(angle)*b0.y());
861 c.setZ(std::cos(angle)*(a0.z())+std::sin(angle)*b0.z());
862
863 G4ThreeVector c0 = c.unit();
864
865 return c0;
866}
867
868//****************************************************************************
869
870G4ThreeVector G4LowEPPolarizedComptonModel::GetPerpendicularPolarization
871(const G4ThreeVector& photonDirection, const G4ThreeVector& photonPolarization) const
872{
873 //
874 // The polarization of a photon is always perpendicular to its momentum direction.
875 // Therefore this function removes those vector component of photonPolarization, which
876 // points in direction of photonDirection
877 //
878 // Mathematically we search the projection of the vector a on the plane E, where n is the
879 // plains normal vector.
880 // The basic equation can be found in each geometry book (e.g. Bronstein):
881 // p = a - (a o n)/(n o n)*n
882
883 return photonPolarization - photonPolarization.dot(photonDirection)/photonDirection.dot(photonDirection) * photonDirection;
884}
885
886//****************************************************************************
887
888G4ThreeVector G4LowEPPolarizedComptonModel::SetNewPolarization(G4double LowEPPCepsilon,
889 G4double sinT2,
890 G4double phi,
891 G4double costheta)
892{
893 G4double rand1;
894 G4double rand2;
895 G4double cosPhi = std::cos(phi);
896 G4double sinPhi = std::sin(phi);
897 G4double sinTheta = std::sqrt(sinT2);
898 G4double cosP2 = cosPhi*cosPhi;
899 G4double normalisation = std::sqrt(1. - cosP2*sinT2);
900
901 // Method based on:
902 // D. Xu, Z. He and F. Zhang
903 // "Detection of Gamma Ray Polarization Using a 3-D Position Sensitive CdZnTe Detector"
904 // IEEE TNS, Vol. 52(4), 1160-1164, 2005.
905
906 // Determination of Theta
907
908 G4double theta;
909 rand1 = G4UniformRand();
910 rand2 = G4UniformRand();
911
912 if (rand1<(LowEPPCepsilon+1.0/LowEPPCepsilon-2)/(2.0*(LowEPPCepsilon+1.0/LowEPPCepsilon)-4.0*sinT2*cosP2))
913 {
914 if (rand2<0.5)
915 theta = pi/2.0;
916 else
917 theta = 3.0*pi/2.0;
918 }
919 else
920 {
921 if (rand2<0.5)
922 theta = 0;
923 else
924 theta = pi;
925 }
926 G4double cosBeta = std::cos(theta);
927 G4double sinBeta = std::sqrt(1-cosBeta*cosBeta);
928
929 G4ThreeVector photonPolarization1;
930
931 G4double xParallel = normalisation*cosBeta;
932 G4double yParallel = -(sinT2*cosPhi*sinPhi)*cosBeta/normalisation;
933 G4double zParallel = -(costheta*sinTheta*cosPhi)*cosBeta/normalisation;
934 G4double xPerpendicular = 0.;
935 G4double yPerpendicular = (costheta)*sinBeta/normalisation;
936 G4double zPerpendicular = -(sinTheta*sinPhi)*sinBeta/normalisation;
937
938 G4double xTotal = (xParallel + xPerpendicular);
939 G4double yTotal = (yParallel + yPerpendicular);
940 G4double zTotal = (zParallel + zPerpendicular);
941
942 photonPolarization1.setX(xTotal);
943 photonPolarization1.setY(yTotal);
944 photonPolarization1.setZ(zTotal);
945
946 return photonPolarization1;
947
948}
949
950//****************************************************************************
951void G4LowEPPolarizedComptonModel::SystemOfRefChange(G4ThreeVector& direction0,
952 G4ThreeVector& direction1,
953 G4ThreeVector& polarization0,
954 G4ThreeVector& polarization1)
955{
956 // direction0 is the original photon direction ---> z
957 // polarization0 is the original photon polarization ---> x
958 // need to specify y axis in the real reference frame ---> y
959 G4ThreeVector Axis_Z0 = direction0.unit();
960 G4ThreeVector Axis_X0 = polarization0.unit();
961 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_X0)).unit(); // to be confirmed;
962
963 G4double direction_x = direction1.getX();
964 G4double direction_y = direction1.getY();
965 G4double direction_z = direction1.getZ();
966
967 direction1 = (direction_x*Axis_X0 + direction_y*Axis_Y0 + direction_z*Axis_Z0).unit();
968 G4double polarization_x = polarization1.getX();
969 G4double polarization_y = polarization1.getY();
970 G4double polarization_z = polarization1.getZ();
971
972 polarization1 = (polarization_x*Axis_X0 + polarization_y*Axis_Y0 + polarization_z*Axis_Z0).unit();
973
974}
975
976//****************************************************************************
977void G4LowEPPolarizedComptonModel::SystemOfRefChangeElect(G4ThreeVector& pdirection,
978 G4ThreeVector& edirection,
979 G4ThreeVector& ppolarization)
980{
981 // direction0 is the original photon direction ---> z
982 // polarization0 is the original photon polarization ---> x
983 // need to specify y axis in the real reference frame ---> y
984 G4ThreeVector Axis_Z0 = pdirection.unit();
985 G4ThreeVector Axis_X0 = ppolarization.unit();
986 G4ThreeVector Axis_Y0 = (Axis_Z0.cross(Axis_X0)).unit(); // to be confirmed;
987
988 G4double direction_x = edirection.getX();
989 G4double direction_y = edirection.getY();
990 G4double direction_z = edirection.getZ();
991
992 edirection = (direction_x*Axis_X0 + direction_y*Axis_Y0 + direction_z*Axis_Z0).unit();
993}
994
995
G4AtomicShellEnumerator
std::vector< const G4Element * > G4ElementVector
const char * G4FindDataDir(const char *)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
const G4double a0
G4double G4Log(G4double x)
Definition: G4Log.hh:227
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:85
std::mutex G4Mutex
Definition: G4Threading.hh:81
CLHEP::Hep3Vector G4ThreeVector
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double alpha2
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double z() const
Hep3Vector unit() const
double getZ() const
double x() const
void setY(double)
double y() const
Hep3Vector cross(const Hep3Vector &) const
double dot(const Hep3Vector &) const
void setZ(double)
bool isOrthogonal(const Hep3Vector &v, double epsilon=tolerance) const
Definition: SpaceVector.cc:233
double mag() const
double getX() const
double howOrthogonal(const Hep3Vector &v) const
Definition: SpaceVector.cc:215
void setX(double)
double getY() const
G4double RandomSelectMomentum(G4int Z, G4int shellIndex) const
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4ThreeVector & GetPolarization() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
G4double GetZ() const
Definition: G4Element.hh:131
static G4LossTableManager * Instance()
G4VAtomDeexcitation * AtomDeexcitation()
void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel) override
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4LowEPPolarizedComptonModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="LowEPComptonModel")
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX) override
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
void InitialiseForElement(const G4ParticleDefinition *, G4int Z) override
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4String & GetName() const
Definition: G4Material.hh:172
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposePolarization(const G4ThreeVector &dir)
void ProposeMomentumDirection(const G4ThreeVector &Pfinal)
void ScaleVector(const G4double factorE, const G4double factorV)
G4double Energy(const std::size_t index) const
G4bool Retrieve(std::ifstream &fIn, G4bool ascii=false)
G4double Value(const G4double energy, std::size_t &lastidx) const
std::size_t GetVectorLength() const
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
void SetOccupancyData()
Definition: G4ShellData.hh:62
G4double BindingEnergy(G4int Z, G4int shellIndex) const
Definition: G4ShellData.cc:161
void LoadData(const G4String &fileName)
Definition: G4ShellData.cc:228
G4int SelectRandomShell(G4int Z) const
Definition: G4ShellData.cc:344
G4bool CheckDeexcitationActiveRegion(G4int coupleIndex)
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:831
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:124
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:641
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:823
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:634
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:561
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:802
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:139
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
const G4double pi
int G4lrint(double ad)
Definition: templates.hh:134