Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4eeToTwoGammaModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4eeToTwoGammaModel
33//
34// Author: Vladimir Ivanchenko on base of Michel Maire code
35//
36// Creation date: 02.08.2004
37//
38// Modifications:
39// 08-04-05 Major optimisation of internal interfaces (V.Ivanchenko)
40// 18-04-05 Compute CrossSectionPerVolume (V.Ivanchenko)
41// 06-02-06 ComputeCrossSectionPerElectron, ComputeCrossSectionPerAtom (mma)
42// 29-06-06 Fix problem for zero energy incident positron (V.Ivanchenko)
43// 20-10-06 Add theGamma as a member (V.Ivanchenko)
44// 18-01-20 Introduce thermal model of annihilation at rest (J.Allison)
45//
46//
47// Class Description:
48//
49// Implementation of e+ annihilation into 2 gamma
50//
51// The secondaries Gamma energies are sampled using the Heitler cross section.
52//
53// A modified version of the random number techniques of Butcher & Messel
54// is used (Nuc Phys 20(1960),15).
55//
56// GEANT4 internal units.
57//
58// Note 1: The initial electron is assumed free and at rest if atomic PDF
59// is not defined
60//
61// Note 2: The annihilation processes producing one or more than two photons are
62// ignored, as negligible compared to the two photons process.
63
64//
65// -------------------------------------------------------------------
66//
67//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
68//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
69
72#include "G4SystemOfUnits.hh"
73#include "G4TrackStatus.hh"
74#include "G4Electron.hh"
75#include "G4Positron.hh"
76#include "G4Gamma.hh"
77#include "Randomize.hh"
78#include "G4RandomDirection.hh"
80#include "G4EmParameters.hh"
81#include "G4Log.hh"
82#include "G4Exp.hh"
83
84//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
85
86using namespace std;
87
88G4bool G4eeToTwoGammaModel::fSampleAtomicPDF = false;
89
91 const G4String& nam)
92 : G4VEmModel(nam),
93 pi_rcl2(pi*classic_electr_radius*classic_electr_radius)
94{
95 theGamma = G4Gamma::Gamma();
96 fParticleChange = nullptr;
97}
98
99//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
100
102
103//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
104
106 const G4DataVector&)
107{
108 if(IsMaster()) {
110 // redo initialisation for each new run
111 fSampleAtomicPDF = false;
112 const auto& materialTable = G4Material::GetMaterialTable();
113 for (const auto& material: *materialTable) {
114 const G4double meanEnergyPerIonPair = material->GetIonisation()->GetMeanEnergyPerIonPair();
115 if (meanEnergyPerIonPair > 0.) {
116 fSampleAtomicPDF = true;
117 if(verbose > 0) {
118 G4cout << "### G4eeToTwoGammaModel: for " << material->GetName() << " mean energy per ion pair is "
119 << meanEnergyPerIonPair/CLHEP::eV << " eV" << G4endl;
120 }
121 }
122 }
123 }
124 // If no materials have meanEnergyPerIonPair set. This is probably the usual
125 // case, since most applications are not senstive to the slight
126 // non-collinearity of gammas in eeToTwoGamma. Do not issue any warning.
127
128 if(fParticleChange) { return; }
129 fParticleChange = GetParticleChangeForGamma();
130}
131
132//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
133
136{
137 // Calculates the cross section per electron of annihilation into two photons
138 // from the Heilter formula.
139
140 G4double ekin = std::max(eV,kineticEnergy);
141
142 G4double tau = ekin/electron_mass_c2;
143 G4double gam = tau + 1.0;
144 G4double gamma2= gam*gam;
145 G4double bg2 = tau * (tau+2.0);
146 G4double bg = sqrt(bg2);
147
148 G4double cross = pi_rcl2*((gamma2+4*gam+1.)*G4Log(gam+bg) - (gam+3.)*bg)
149 / (bg2*(gam+1.));
150 return cross;
151}
152
153//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
154
157 G4double kineticEnergy, G4double Z,
159{
160 // Calculates the cross section per atom of annihilation into two photons
161 return Z*ComputeCrossSectionPerElectron(kineticEnergy);
162}
163
164//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
165
167 const G4Material* material,
169 G4double kineticEnergy,
171{
172 // Calculates the cross section per volume of annihilation into two photons
173 return material->GetElectronDensity()*ComputeCrossSectionPerElectron(kineticEnergy);
174}
175
176//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
177
178// Polarisation of gamma according to M.H.L.Pryce and J.C.Ward,
179// Nature 4065 (1947) 435.
180
181void G4eeToTwoGammaModel::SampleSecondaries(vector<G4DynamicParticle*>* vdp,
182 const G4MaterialCutsCouple* pCutsCouple,
183 const G4DynamicParticle* dp,
184 G4double,
185 G4double)
186{
187 G4double posiKinEnergy = dp->GetKineticEnergy();
188 G4DynamicParticle *aGamma1, *aGamma2;
189
190 CLHEP::HepRandomEngine* rndmEngine = G4Random::getTheEngine();
191
192 // Case at rest
193 if(posiKinEnergy == 0.0) {
194
195 const G4double eGamma = electron_mass_c2;
196
197 // In rest frame of positronium gammas are back to back
198 const G4ThreeVector& dir1 = G4RandomDirection();
199 const G4ThreeVector& dir2 = -dir1;
200 aGamma1 = new G4DynamicParticle(G4Gamma::Gamma(),dir1,eGamma);
201 aGamma2 = new G4DynamicParticle(G4Gamma::Gamma(),dir2,eGamma);
202
203 // In rest frame the gammas are polarised perpendicular to each other - see
204 // Pryce and Ward, Nature No 4065 (1947) p.435.
205 // Snyder et al, Physical Review 73 (1948) p.440.
206 G4ThreeVector pol1 = (G4RandomDirection().cross(dir1)).unit();
207 G4ThreeVector pol2 = (pol1.cross(dir2)).unit();
208
209 // But the positronium is moving...
210 // A positron in matter slows down and combines with an atomic electron to
211 // make a neutral “atom” called positronium, about half the size of a normal
212 // atom. I expect that when the energy of the positron is small enough,
213 // less than the binding energy of positronium (6.8 eV), it is
214 // energetically favourable for an electron from the outer orbitals of a
215 // nearby atom or molecule to transfer and bind to the positron, as in an
216 // ionic bond, leaving behind a mildly ionised nearby atom/molecule. I
217 // would expect the positronium to come away with a kinetic energy of a
218 // few eV on average. In its para (spin 0) state it annihilates into two
219 // photons, which in the rest frame of the positronium are collinear
220 // (back-to-back) due to momentum conservation. Because of the motion of the
221 // positronium, photons will be not quite back-to-back in the laboratory.
222
223 // The positroniuim acquires an energy of order its binding energy and
224 // doesn't have time to thermalise. Nevertheless, here we approximate its
225 // energy distribution by a Maxwell-Boltzman with mean energy <KE>. In terms
226 // of a more familiar concept of temperature, and the law of equipartition
227 // of energy of translational motion, <KE>=3kT/2. Each component of velocity
228 // has a distribution exp(-mv^2/2kT), which is a Gaussian of mean zero
229 // and variance kT/m=2<KE>/3m, where m is the positronium mass.
230
231 // We take <KE> = material->GetIonisation()->GetMeanEnergyPerIonPair().
232
233 if(fSampleAtomicPDF) {
234 const G4Material* material = pCutsCouple->GetMaterial();
235 const G4double meanEnergyPerIonPair = material->GetIonisation()->GetMeanEnergyPerIonPair();
236 const G4double& meanKE = meanEnergyPerIonPair; // Just an alias
237 if (meanKE > 0.) { // Positronium haas motion
238 // Mass of positronium
239 const G4double mass = 2.*electron_mass_c2;
240 // Mean <KE>=3kT/2, as described above
241 // const G4double T = 2.*meanKE/(3.*k_Boltzmann);
242 // Component velocities: Gaussian, variance kT/m=2<KE>/3m.
243 const G4double sigmav = std::sqrt(2.*meanKE/(3.*mass));
244 // This is in units where c=1
245 const G4double vx = G4RandGauss::shoot(0.,sigmav);
246 const G4double vy = G4RandGauss::shoot(0.,sigmav);
247 const G4double vz = G4RandGauss::shoot(0.,sigmav);
248 const G4ThreeVector v(vx,vy,vz); // In unit where c=1
249 const G4ThreeVector& beta = v; // so beta=v/c=v
250
251 aGamma1->Set4Momentum(aGamma1->Get4Momentum().boost(beta));
252 aGamma2->Set4Momentum(aGamma2->Get4Momentum().boost(beta));
253
254 // Rotate polarisation vectors
255 const G4ThreeVector& newDir1 = aGamma1->GetMomentumDirection();
256 const G4ThreeVector& newDir2 = aGamma2->GetMomentumDirection();
257 const G4ThreeVector& axis1 = dir1.cross(newDir1); // No need to be unit
258 const G4ThreeVector& axis2 = dir2.cross(newDir2); // No need to be unit
259 const G4double& angle1 = std::acos(dir1*newDir1);
260 const G4double& angle2 = std::acos(dir2*newDir2);
261 if (axis1 != G4ThreeVector()) pol1.rotate(axis1,angle1);
262 if (axis2 != G4ThreeVector()) pol2.rotate(axis2,angle2);
263 }
264 }
265 aGamma1->SetPolarization(pol1.x(),pol1.y(),pol1.z());
266 aGamma2->SetPolarization(pol2.x(),pol2.y(),pol2.z());
267
268 } else { // Positron interacts in flight
269
270 G4ThreeVector posiDirection = dp->GetMomentumDirection();
271
272 G4double tau = posiKinEnergy/electron_mass_c2;
273 G4double gam = tau + 1.0;
274 G4double tau2 = tau + 2.0;
275 G4double sqgrate = sqrt(tau/tau2)*0.5;
276 G4double sqg2m1 = sqrt(tau*tau2);
277
278 // limits of the energy sampling
279 G4double epsilmin = 0.5 - sqgrate;
280 G4double epsilmax = 0.5 + sqgrate;
281 G4double epsilqot = epsilmax/epsilmin;
282
283 //
284 // sample the energy rate of the created gammas
285 //
286 G4double epsil, greject;
287
288 do {
289 epsil = epsilmin*G4Exp(G4Log(epsilqot)*rndmEngine->flat());
290 greject = 1. - epsil + (2.*gam*epsil-1.)/(epsil*tau2*tau2);
291 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
292 } while( greject < rndmEngine->flat());
293
294 //
295 // scattered Gamma angles. ( Z - axis along the parent positron)
296 //
297
298 G4double cost = (epsil*tau2-1.)/(epsil*sqg2m1);
299 if(std::abs(cost) > 1.0) {
300 G4cout << "### G4eeToTwoGammaModel WARNING cost= " << cost
301 << " positron Ekin(MeV)= " << posiKinEnergy
302 << " gamma epsil= " << epsil
303 << G4endl;
304 if(cost > 1.0) cost = 1.0;
305 else cost = -1.0;
306 }
307 G4double sint = sqrt((1.+cost)*(1.-cost));
308 G4double phi = twopi * rndmEngine->flat();
309
310 //
311 // kinematic of the created pair
312 //
313
314 G4double totalEnergy = posiKinEnergy + 2.0*electron_mass_c2;
315 G4double phot1Energy = epsil*totalEnergy;
316
317 G4ThreeVector phot1Direction(sint*cos(phi), sint*sin(phi), cost);
318 phot1Direction.rotateUz(posiDirection);
319 aGamma1 = new G4DynamicParticle (theGamma,phot1Direction, phot1Energy);
320 phi = twopi * rndmEngine->flat();
321 G4double cosphi = cos(phi);
322 G4double sinphi = sin(phi);
323 G4ThreeVector pol(cosphi, sinphi, 0.0);
324 pol.rotateUz(phot1Direction);
325 aGamma1->SetPolarization(pol.x(),pol.y(),pol.z());
326
327 G4double phot2Energy =(1.-epsil)*totalEnergy;
328 G4double posiP= sqrt(posiKinEnergy*(posiKinEnergy+2.*electron_mass_c2));
329 G4ThreeVector dir = posiDirection*posiP - phot1Direction*phot1Energy;
330 G4ThreeVector phot2Direction = dir.unit();
331
332 // create G4DynamicParticle object for the particle2
333 aGamma2 = new G4DynamicParticle (theGamma, phot2Direction, phot2Energy);
334
335 //!!! likely problematic direction to be checked
336 pol.set(-sinphi, cosphi, 0.0);
337 pol.rotateUz(phot1Direction);
338 cost = pol*phot2Direction;
339 pol -= cost*phot2Direction;
340 pol = pol.unit();
341 aGamma2->SetPolarization(pol.x(),pol.y(),pol.z());
342 /*
343 G4cout << "Annihilation on fly: e0= " << posiKinEnergy
344 << " m= " << electron_mass_c2
345 << " e1= " << phot1Energy
346 << " e2= " << phot2Energy << " dir= " << dir
347 << " -> " << phot1Direction << " "
348 << phot2Direction << G4endl;
349 */
350 }
351
352 vdp->push_back(aGamma1);
353 vdp->push_back(aGamma2);
354
355 // kill primary positron
356 fParticleChange->SetProposedKineticEnergy(0.0);
357 fParticleChange->ProposeTrackStatus(fStopAndKill);
358}
359
360//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
G4ThreeVector G4RandomDirection()
CLHEP::Hep3Vector G4ThreeVector
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
double z() const
Hep3Vector unit() const
double x() const
double y() const
Hep3Vector cross(const Hep3Vector &) const
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
Hep3Vector & rotate(double, const Hep3Vector &)
Definition: ThreeVectorR.cc:24
HepLorentzVector & boost(double, double, double)
virtual double flat()=0
void SetPolarization(const G4ThreeVector &)
const G4ThreeVector & GetMomentumDirection() const
G4LorentzVector Get4Momentum() const
G4double GetKineticEnergy() const
void Set4Momentum(const G4LorentzVector &momentum)
static G4EmParameters * Instance()
G4int Verbose() const
static G4Gamma * Gamma()
Definition: G4Gamma.cc:85
G4double GetMeanEnergyPerIonPair() const
const G4Material * GetMaterial() const
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:221
G4double GetElectronDensity() const
Definition: G4Material.hh:212
static G4MaterialTable * GetMaterialTable()
Definition: G4Material.cc:677
void SetProposedKineticEnergy(G4double proposedKinEnergy)
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:124
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
void ProposeTrackStatus(G4TrackStatus status)
virtual G4double ComputeCrossSectionPerElectron(G4double kinEnergy)
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0., G4double cutEnergy=0., G4double maxEnergy=DBL_MAX) override
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4eeToTwoGammaModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="eplus2gg")
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX) override
~G4eeToTwoGammaModel() override