Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4LivermoreNuclearGammaConversionModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Author: Sebastien Incerti
27// 22 January 2012
28// on base of G4LivermoreNuclearGammaConversionModel (original version)
29// and G4LivermoreRayleighModel (MT version)
30
33#include "G4SystemOfUnits.hh"
34#include "G4Log.hh"
35#include "G4Exp.hh"
36#include "G4AutoLock.hh"
37
38//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
39
40using namespace std;
41namespace { G4Mutex LivermoreNuclearGammaConversionModelMutex = G4MUTEX_INITIALIZER; }
42
43//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
44
45G4PhysicsFreeVector* G4LivermoreNuclearGammaConversionModel::data[] = {nullptr};
46
48(const G4ParticleDefinition*, const G4String& nam)
49 :G4VEmModel(nam),smallEnergy(2.*MeV),
50 isInitialised(false)
51{
52 fParticleChange = nullptr;
53
54 lowEnergyLimit = 2.0*electron_mass_c2;
55
56 verboseLevel= 0;
57 // Verbosity scale for debugging purposes:
58 // 0 = nothing
59 // 1 = calculation of cross sections, file openings...
60 // 2 = entering in methods
61
62 if(verboseLevel > 0)
63 {
64 G4cout << "G4LivermoreNuclearGammaConversionModel is constructed " << G4endl;
65 }
66}
67
68//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
69
71{
72 if(IsMaster()) {
73 for(G4int i=0; i<maxZ; ++i) {
74 if(data[i]) {
75 delete data[i];
76 data[i] = 0;
77 }
78 }
79 }
80}
81
82//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
83
85 const G4ParticleDefinition* particle,
86 const G4DataVector& cuts)
87{
88 if (verboseLevel > 1)
89 {
90 G4cout << "Calling Initialise() of G4LivermoreNuclearGammaConversionModel."
91 << G4endl
92 << "Energy range: "
93 << LowEnergyLimit() / MeV << " MeV - "
94 << HighEnergyLimit() / GeV << " GeV"
95 << G4endl;
96 }
97
98 if(IsMaster())
99 {
100
101 // Initialise element selector
102 InitialiseElementSelectors(particle, cuts);
103
104 // Access to elements
105 const char* path = G4FindDataDir("G4LEDATA");
106
107 G4ProductionCutsTable* theCoupleTable =
109
110 G4int numOfCouples = (G4int)theCoupleTable->GetTableSize();
111
112 for(G4int i=0; i<numOfCouples; ++i)
113 {
114 const G4Material* material =
115 theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
116 const G4ElementVector* theElementVector = material->GetElementVector();
117 std::size_t nelm = material->GetNumberOfElements();
118
119 for (std::size_t j=0; j<nelm; ++j)
120 {
121 G4int Z = (G4int)(*theElementVector)[j]->GetZ();
122 if(Z < 1) { Z = 1; }
123 else if(Z > maxZ) { Z = maxZ; }
124 if(!data[Z]) { ReadData(Z, path); }
125 }
126 }
127 }
128 if(isInitialised) { return; }
129 fParticleChange = GetParticleChangeForGamma();
130 isInitialised = true;
131}
132
133//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
134
136 const G4ParticleDefinition*, G4VEmModel* masterModel)
137{
139}
140
141//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
142
146 G4double)
147{
148 return lowEnergyLimit;
149}
150
151//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
152
153void G4LivermoreNuclearGammaConversionModel::ReadData(size_t Z, const char* path)
154{
155 if (verboseLevel > 1)
156 {
157 G4cout << "Calling ReadData() of G4LivermoreNuclearGammaConversionModel"
158 << G4endl;
159 }
160
161
162 if(data[Z]) { return; }
163
164 const char* datadir = path;
165
166 if(!datadir)
167 {
168 datadir = G4FindDataDir("G4LEDATA");
169 if(!datadir)
170 {
171 G4Exception("G4LivermoreNuclearGammaConversionModel::ReadData()",
172 "em0006",FatalException,
173 "Environment variable G4LEDATA not defined");
174 return;
175 }
176 }
177
178 data[Z] = new G4PhysicsFreeVector(0,/*spline=*/true);
179
180 std::ostringstream ost;
181 ost << datadir << "/livermore/pairdata/pp-pair-cs-" << Z <<".dat";
182 std::ifstream fin(ost.str().c_str());
183
184 if( !fin.is_open())
185 {
187 ed << "G4LivermoreNuclearGammaConversionModel data file <" << ost.str().c_str()
188 << "> is not opened!" << G4endl;
189 G4Exception("G4LivermoreNuclearGammaConversionModel::ReadData()",
190 "em0003",FatalException,
191 ed,"G4LEDATA version should be G4EMLOW8.0 or later.");
192 return;
193 }
194 else
195 {
196
197 if(verboseLevel > 3) { G4cout << "File " << ost.str()
198 << " is opened by G4LivermoreNuclearGammaConversionModel" << G4endl;}
199
200 data[Z]->Retrieve(fin, true);
201 }
202
203 // Activation of spline interpolation
204 data[Z] ->FillSecondDerivatives();
205}
206
207//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
208
211 G4double GammaEnergy,
214{
215 if (verboseLevel > 1)
216 {
217 G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreNuclearGammaConversionModel"
218 << G4endl;
219 }
220
221 if (GammaEnergy < lowEnergyLimit) { return 0.0; }
222
223 G4double xs = 0.0;
224
225 G4int intZ=G4int(Z);
226
227 if(intZ < 1 || intZ > maxZ) { return xs; }
228
229 G4PhysicsFreeVector* pv = data[intZ];
230
231 // if element was not initialised
232 // do initialisation safely for MT mode
233 if(!pv)
234 {
235 InitialiseForElement(0, intZ);
236 pv = data[intZ];
237 if(!pv) { return xs; }
238 }
239 // x-section is taken from the table
240 xs = pv->Value(GammaEnergy);
241
242 if(verboseLevel > 0)
243 {
244 std::size_t n = pv->GetVectorLength() - 1;
245 G4cout << "****** DEBUG: tcs value for Z=" << Z << " at energy (MeV)="
246 << GammaEnergy/MeV << G4endl;
247 G4cout << " cs (Geant4 internal unit)=" << xs << G4endl;
248 G4cout << " -> first cs value in EADL data file (iu) =" << (*pv)[0] << G4endl;
249 G4cout << " -> last cs value in EADL data file (iu) =" << (*pv)[n] << G4endl;
250 G4cout << "*********************************************************" << G4endl;
251 }
252 return xs;
253}
254
255//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
256
258 std::vector<G4DynamicParticle*>* fvect,
259 const G4MaterialCutsCouple* couple,
260 const G4DynamicParticle* aDynamicGamma,
262{
263 // The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
264 // cross sections with Coulomb correction. A modified version of the random
265 // number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
266
267 // Note 1 : Effects due to the breakdown of the Born approximation at low
268 // energy are ignored.
269 // Note 2 : The differential cross section implicitly takes account of
270 // pair creation in both nuclear and atomic electron fields. However triplet
271 // prodution is not generated.
272
273 if (verboseLevel > 1) {
274 G4cout << "Calling SampleSecondaries() of G4LivermoreNuclearGammaConversionModel"
275 << G4endl;
276 }
277
278 G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
279 G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
280
282 G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
283
284 // Do it fast if photon energy < 2. MeV
285 if (photonEnergy < smallEnergy )
286 {
287 epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
288 }
289 else
290 {
291 // Select randomly one element in the current material
292 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
293 const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
294
295 if (element == nullptr)
296 {
297 G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - element = 0"
298 << G4endl;
299 return;
300 }
301 G4IonisParamElm* ionisation = element->GetIonisation();
302 if (ionisation == nullptr)
303 {
304 G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - ionisation = 0"
305 << G4endl;
306 return;
307 }
308
309 // Extract Coulomb factor for this Elements
310 G4double fZ = 8. * (ionisation->GetlogZ3());
311 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
312
313 // Limits of the screening variable
314 G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
315 G4double screenMax = G4Exp ((42.24 - fZ)/8.368) - 0.952 ;
316 G4double screenMin = std::min(4.*screenFactor,screenMax) ;
317
318 // Limits of the energy sampling
319 G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
320 G4double epsilonMin = std::max(epsilon0Local,epsilon1);
321 G4double epsilonRange = 0.5 - epsilonMin ;
322
323 // Sample the energy rate of the created electron (or positron)
324 G4double screen;
325 G4double gReject ;
326
327 G4double f10 = ScreenFunction1(screenMin) - fZ;
328 G4double f20 = ScreenFunction2(screenMin) - fZ;
329 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
330 G4double normF2 = std::max(1.5 * f20,0.);
331
332 do
333 {
334 if (normF1 / (normF1 + normF2) > G4UniformRand() )
335 {
336 epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.333333) ;
337 screen = screenFactor / (epsilon * (1. - epsilon));
338 gReject = (ScreenFunction1(screen) - fZ) / f10 ;
339 }
340 else
341 {
342 epsilon = epsilonMin + epsilonRange * G4UniformRand();
343 screen = screenFactor / (epsilon * (1 - epsilon));
344 gReject = (ScreenFunction2(screen) - fZ) / f20 ;
345 }
346 } while ( gReject < G4UniformRand() );
347 } // End of epsilon sampling
348
349 // Fix charges randomly
350 G4double electronTotEnergy;
351 G4double positronTotEnergy;
352
353 if (G4UniformRand() > 0.5)
354 {
355 electronTotEnergy = (1. - epsilon) * photonEnergy;
356 positronTotEnergy = epsilon * photonEnergy;
357 }
358 else
359 {
360 positronTotEnergy = (1. - epsilon) * photonEnergy;
361 electronTotEnergy = epsilon * photonEnergy;
362 }
363
364 // Scattered electron (positron) angles. ( Z - axis along the parent photon)
365 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
366 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
367
368 G4double u;
369 const G4double a1 = 0.625;
370 G4double a2 = 3. * a1;
371
372 if (0.25 > G4UniformRand())
373 {
374 u = - G4Log(G4UniformRand() * G4UniformRand()) / a1 ;
375 }
376 else
377 {
378 u = - G4Log(G4UniformRand() * G4UniformRand()) / a2 ;
379 }
380
381 G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
382 G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
383 G4double phi = twopi * G4UniformRand();
384
385 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
386 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
387
388 // Kinematics of the created pair:
389 // the electron and positron are assumed to have a symetric angular
390 // distribution with respect to the Z axis along the parent photon
391
392 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
393
394 G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
395 electronDirection.rotateUz(photonDirection);
396
398 electronDirection,
399 electronKineEnergy);
400
401 // The e+ is always created
402 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
403
404 G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
405 positronDirection.rotateUz(photonDirection);
406
407 // Create G4DynamicParticle object for the particle2
409 positronDirection,
410 positronKineEnergy);
411 // Fill output vector
412 fvect->push_back(particle1);
413 fvect->push_back(particle2);
414
415 // kill incident photon
416 fParticleChange->SetProposedKineticEnergy(0.);
417 fParticleChange->ProposeTrackStatus(fStopAndKill);
418
419}
420
421//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
422
424G4LivermoreNuclearGammaConversionModel::ScreenFunction1(G4double screenVariable)
425{
426 // Compute the value of the screening function 3*phi1 - phi2
427
428 G4double value;
429
430 if (screenVariable > 1.)
431 value = 42.24 - 8.368 * G4Log(screenVariable + 0.952);
432 else
433 value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
434
435 return value;
436}
437
438//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
439
441G4LivermoreNuclearGammaConversionModel::ScreenFunction2(G4double screenVariable)
442{
443 // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
444 G4double value;
445
446 if (screenVariable > 1.)
447 value = 42.24 - 8.368 * G4Log(screenVariable + 0.952);
448 else
449 value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
450
451 return value;
452}
453
454//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
455
457 const G4ParticleDefinition*,
458 G4int Z)
459{
460 G4AutoLock l(&LivermoreNuclearGammaConversionModelMutex);
461 if(!data[Z]) { ReadData(Z); }
462 l.unlock();
463}
464
465//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4double epsilon(G4double density, G4double temperature)
std::vector< const G4Element * > G4ElementVector
const char * G4FindDataDir(const char *)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:85
std::mutex G4Mutex
Definition: G4Threading.hh:81
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
G4double GetfCoulomb() const
Definition: G4Element.hh:190
G4IonisParamElm * GetIonisation() const
Definition: G4Element.hh:198
G4double GetlogZ3() const
G4double GetZ3() const
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX) override
G4double MinPrimaryEnergy(const G4Material *, const G4ParticleDefinition *, G4double) override
void InitialiseForElement(const G4ParticleDefinition *, G4int Z) override
void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel) override
G4LivermoreNuclearGammaConversionModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="LivermoreNuclearConversion")
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
void SetProposedKineticEnergy(G4double proposedKinEnergy)
G4bool Retrieve(std::ifstream &fIn, G4bool ascii=false)
G4double Value(const G4double energy, std::size_t &lastidx) const
std::size_t GetVectorLength() const
void FillSecondDerivatives(const G4SplineType=G4SplineType::Base, const G4double dir1=0.0, const G4double dir2=0.0)
static G4Positron * Positron()
Definition: G4Positron.cc:93
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
std::size_t GetTableSize() const
static G4ProductionCutsTable * GetProductionCutsTable()
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:831
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:124
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:641
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:823
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:634
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:561
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:139
void ProposeTrackStatus(G4TrackStatus status)