Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4StatMFMacroCanonical.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28// by V. Lara
29// --------------------------------------------------------------------
30//
31// Modified:
32// 25.07.08 I.Pshenichnov (in collaboration with Alexander Botvina and Igor
33// Mishustin (FIAS, Frankfurt, INR, Moscow and Kurchatov Institute,
34// Moscow, [email protected]) fixed infinite loop for
35// a fagment with Z=A; fixed memory leak
36
39#include "G4SystemOfUnits.hh"
40#include "G4Pow.hh"
41
42// constructor
44{
45
46 // Get memory for clusters
47 _theClusters.push_back(new G4StatMFMacroNucleon); // Size 1
48 _theClusters.push_back(new G4StatMFMacroBiNucleon); // Size 2
49 _theClusters.push_back(new G4StatMFMacroTriNucleon); // Size 3
50 _theClusters.push_back(new G4StatMFMacroTetraNucleon); // Size 4
51 for (G4int i = 4; i < theFragment.GetA_asInt(); i++)
52 _theClusters.push_back(new G4StatMFMacroMultiNucleon(i+1)); // Size 5 ... A
53
54 // Perform class initialization
55 Initialize(theFragment);
56
57}
58
59// destructor
61{
62 // garbage collection
63 if (!_theClusters.empty())
64 {
65 std::for_each(_theClusters.begin(),_theClusters.end(),DeleteFragment());
66 }
67}
68
69// Initialization method
70void G4StatMFMacroCanonical::Initialize(const G4Fragment & theFragment)
71{
72
73 G4int A = theFragment.GetA_asInt();
74 G4int Z = theFragment.GetZ_asInt();
75 G4double x = 1.0 - 2.0*Z/G4double(A);
76 G4Pow* g4calc = G4Pow::GetInstance();
77
78 // Free Internal energy at T = 0
79 __FreeInternalE0 = A*( -G4StatMFParameters::GetE0() + // Volume term (for T = 0)
80 G4StatMFParameters::GetGamma0()*x*x) // Symmetry term
81 + G4StatMFParameters::GetBeta0()*g4calc->Z23(A) + // Surface term (for T = 0)
82 0.6*elm_coupling*Z*Z/(G4StatMFParameters::Getr0()* // Coulomb term
83 g4calc->Z13(A));
84
85 CalculateTemperature(theFragment);
86 return;
87}
88
89void G4StatMFMacroCanonical::CalculateTemperature(const G4Fragment & theFragment)
90{
91 // Excitation Energy
92 G4double U = theFragment.GetExcitationEnergy();
93
94 G4int A = theFragment.GetA_asInt();
95 G4int Z = theFragment.GetZ_asInt();
96
97 // Fragment Multiplicity
98 G4double FragMult = std::max((1.0+(2.31/MeV)*(U/A - 3.5*MeV))*A/100.0, 2.0);
99
100 // Parameter Kappa
101 G4Pow* g4calc = G4Pow::GetInstance();
102 _Kappa = (1.0+elm_coupling*(g4calc->A13(FragMult)-1)/
103 (G4StatMFParameters::Getr0()*g4calc->Z13(A)));
104 _Kappa = _Kappa*_Kappa*_Kappa - 1.0;
105
106 G4StatMFMacroTemperature * theTemp = new
107 G4StatMFMacroTemperature(A,Z,U,__FreeInternalE0,_Kappa,&_theClusters);
108
110 _ChemPotentialNu = theTemp->GetChemicalPotentialNu();
111 _ChemPotentialMu = theTemp->GetChemicalPotentialMu();
113 __MeanEntropy = theTemp->GetEntropy();
114
115 delete theTemp;
116
117 return;
118}
119
120// --------------------------------------------------------------------------
121
123// Calculate total fragments multiplicity, fragment atomic numbers and charges
124{
125 G4int A = theFragment.GetA_asInt();
126 G4int Z = theFragment.GetZ_asInt();
127
128 std::vector<G4int> ANumbers(A);
129
130 G4double Multiplicity = ChooseA(A,ANumbers);
131
132 std::vector<G4int> FragmentsA;
133
134 G4int i = 0;
135 for (i = 0; i < A; i++)
136 {
137 for (G4int j = 0; j < ANumbers[i]; j++) FragmentsA.push_back(i+1);
138 }
139
140 // Sort fragments in decreasing order
141 G4int im = 0;
142 for (G4int j = 0; j < Multiplicity; j++)
143 {
144 G4int FragmentsAMax = 0;
145 im = j;
146 for (i = j; i < Multiplicity; i++)
147 {
148 if (FragmentsA[i] <= FragmentsAMax) { continue; }
149 else
150 {
151 im = i;
152 FragmentsAMax = FragmentsA[im];
153 }
154 }
155 if (im != j)
156 {
157 FragmentsA[im] = FragmentsA[j];
158 FragmentsA[j] = FragmentsAMax;
159 }
160 }
161 return ChooseZ(Z,FragmentsA);
162}
163
164G4double G4StatMFMacroCanonical::ChooseA(G4int A, std::vector<G4int> & ANumbers)
165 // Determines fragments multiplicities and compute total fragment multiplicity
166{
167 G4double multiplicity = 0.0;
168 G4int i;
169
170 std::vector<G4double> AcumMultiplicity;
171 AcumMultiplicity.reserve(A);
172
173 AcumMultiplicity.push_back((*(_theClusters.begin()))->GetMeanMultiplicity());
174 for (std::vector<G4VStatMFMacroCluster*>::iterator it = _theClusters.begin()+1;
175 it != _theClusters.end(); ++it)
176 {
177 AcumMultiplicity.push_back((*it)->GetMeanMultiplicity()+AcumMultiplicity.back());
178 }
179
180 G4int CheckA;
181 do {
182 CheckA = -1;
183 G4int SumA = 0;
184 G4int ThisOne = 0;
185 multiplicity = 0.0;
186 for (i = 0; i < A; i++) ANumbers[i] = 0;
187 do {
189 for (i = 0; i < A; i++) {
190 if (RandNumber < AcumMultiplicity[i]) {
191 ThisOne = i;
192 break;
193 }
194 }
195 multiplicity++;
196 ANumbers[ThisOne] = ANumbers[ThisOne]+1;
197 SumA += ThisOne+1;
198 CheckA = A - SumA;
199
200 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
201 } while (CheckA > 0);
202
203 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
204 } while (CheckA < 0 || std::abs(__MeanMultiplicity - multiplicity) > std::sqrt(__MeanMultiplicity) + 0.5);
205
206 return multiplicity;
207}
208
209G4StatMFChannel * G4StatMFMacroCanonical::ChooseZ(G4int & Z,
210 std::vector<G4int> & FragmentsA)
211 //
212{
213 G4Pow* g4calc = G4Pow::GetInstance();
214 std::vector<G4int> FragmentsZ;
215
216 G4int DeltaZ = 0;
218 G4int multiplicity = (G4int)FragmentsA.size();
219
220 do {
221 FragmentsZ.clear();
222 G4int SumZ = 0;
223 for (G4int i = 0; i < multiplicity; ++i)
224 {
225 G4int A = FragmentsA[i];
226 if (A <= 1)
227 {
228 G4double RandNumber = G4UniformRand();
229 if (RandNumber < (*_theClusters.begin())->GetZARatio())
230 {
231 FragmentsZ.push_back(1);
232 SumZ += FragmentsZ[i];
233 }
234 else FragmentsZ.push_back(0);
235 }
236 else
237 {
238 G4double RandZ;
240 + 2*CP*g4calc->Z23(FragmentsA[i]);
241 G4double ZMean;
242 if (FragmentsA[i] > 1 && FragmentsA[i] < 5) { ZMean = 0.5*FragmentsA[i]; }
243 else {
244 ZMean = FragmentsA[i]*(4.0*G4StatMFParameters::GetGamma0()
245 + _ChemPotentialNu)/CC;
246 }
247 G4double ZDispersion = std::sqrt(FragmentsA[i]*__MeanTemperature/CC);
248 G4int z;
249 do
250 {
251 RandZ = G4RandGauss::shoot(ZMean,ZDispersion);
252 z = G4lrint(RandZ+0.5);
253 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
254 } while (z < 0 || z > A);
255 FragmentsZ.push_back(z);
256 SumZ += z;
257 }
258 }
259 DeltaZ = Z - SumZ;
260 // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
261 } while (std::abs(DeltaZ) > 1);
262
263 // DeltaZ can be 0, 1 or -1
264 G4int idx = 0;
265 if (DeltaZ < 0.0)
266 {
267 while (FragmentsZ[idx] < 1) { ++idx; }
268 }
269 FragmentsZ[idx] += DeltaZ;
270
271 G4StatMFChannel * theChannel = new G4StatMFChannel;
272 for (G4int i = multiplicity-1; i >= 0; --i)
273 {
274 theChannel->CreateFragment(FragmentsA[i],FragmentsZ[i]);
275 }
276
277 return theChannel;
278}
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
const G4double A[17]
#define G4UniformRand()
Definition: Randomize.hh:52
G4double GetExcitationEnergy() const
Definition: G4Fragment.hh:312
G4int GetZ_asInt() const
Definition: G4Fragment.hh:289
G4int GetA_asInt() const
Definition: G4Fragment.hh:284
Definition: G4Pow.hh:49
static G4Pow * GetInstance()
Definition: G4Pow.cc:41
G4double A13(G4double A) const
Definition: G4Pow.cc:116
G4double Z13(G4int Z) const
Definition: G4Pow.hh:123
G4double Z23(G4int Z) const
Definition: G4Pow.hh:125
void CreateFragment(G4int A, G4int Z)
G4StatMFMacroCanonical(G4Fragment const &theFragment)
G4StatMFChannel * ChooseAandZ(const G4Fragment &theFragment)
G4double GetChemicalPotentialMu(void) const
G4double GetChemicalPotentialNu(void) const
G4double GetMeanMultiplicity(void) const
static G4double GetBeta0()
static G4double GetE0()
static G4double GetGamma0()
static G4double GetCoulomb()
static G4double Getr0()
int G4lrint(double ad)
Definition: templates.hh:134