Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4PolarizedIonisationModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// -------------------------------------------------------------------
27//
28// Geant4 Class file
29//
30// File name: G4PolarizedIonisationModel
31//
32// Author: A.Schaelicke on base of Vladimir Ivanchenko code
33//
34// Class Description:
35// Implementation of energy loss and delta-electron production by e+/e-
36// (including polarization effects)
37
39
46#include "Randomize.hh"
47
48//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
50 const G4ParticleDefinition* p, const G4String& nam)
51 : G4MollerBhabhaModel(p, nam)
52 , fCrossSectionCalculator(nullptr)
53{
54 fBeamPolarization = G4StokesVector::ZERO;
55 fTargetPolarization = G4StokesVector::ZERO;
56
57 fPositronPolarization = G4StokesVector::ZERO;
58 fElectronPolarization = G4StokesVector::ZERO;
59
60 isElectron = (p == theElectron); // necessary due to wrong order in
61 // G4MollerBhabhaModel constructor!
62
63 if(!isElectron)
64 {
65 G4cout << " buildBhabha cross section " << isElectron << G4endl;
66 fCrossSectionCalculator = new G4PolarizedIonisationBhabhaXS();
67 }
68 else
69 {
70 G4cout << " buildMoller cross section " << isElectron << G4endl;
71 fCrossSectionCalculator = new G4PolarizedIonisationMollerXS();
72 }
73}
74
75//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
77{
78 if(fCrossSectionCalculator)
79 {
80 delete fCrossSectionCalculator;
81 }
82}
83
84//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
86 const G4ParticleDefinition* pd, G4double kinEnergy, G4double cut,
87 G4double emax)
88{
90 pd, kinEnergy, cut, emax);
91 G4double factor = 1.;
92 if(xs != 0.)
93 {
94 G4double tmax = MaxSecondaryEnergy(pd, kinEnergy);
95 tmax = std::min(emax, tmax);
96
97 if(std::fabs(cut / emax - 1.) < 1.e-10)
98 return xs;
99
100 if(cut < tmax)
101 {
102 G4double xmin = cut / kinEnergy;
103 G4double xmax = tmax / kinEnergy;
104 G4double gam = kinEnergy / electron_mass_c2 + 1.0;
105 G4double crossPol = fCrossSectionCalculator->TotalXSection(
106 xmin, xmax, gam, fBeamPolarization, fTargetPolarization);
107 G4double crossUnpol = fCrossSectionCalculator->TotalXSection(
109 if(crossUnpol > 0.)
110 factor = crossPol / crossUnpol;
111 }
112 }
113 return xs * factor;
114}
115
116//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
118 std::vector<G4DynamicParticle*>* vdp, const G4MaterialCutsCouple*,
119 const G4DynamicParticle* dp, G4double tmin, G4double maxEnergy)
120{
121 // *** obtain and save target and beam polarization ***
122 G4PolarizationManager* polarizationManager =
124
125 const G4Track* aTrack = fParticleChange->GetCurrentTrack();
126
127 // obtain polarization of the beam
128 fBeamPolarization = G4StokesVector(dp->GetPolarization());
129
130 // obtain polarization of the media
131 G4VPhysicalVolume* aPVolume = aTrack->GetVolume();
132 G4LogicalVolume* aLVolume = aPVolume->GetLogicalVolume();
133 const G4bool targetIsPolarized = polarizationManager->IsPolarized(aLVolume);
134 fTargetPolarization = polarizationManager->GetVolumePolarization(aLVolume);
135
136 // transfer target polarization in interaction frame
137 if(targetIsPolarized)
138 fTargetPolarization.rotateUz(dp->GetMomentumDirection());
139
140 G4double tmax = std::min(maxEnergy, MaxSecondaryKinEnergy(dp));
141 if(tmin >= tmax)
142 return;
143
144 G4double polL = fBeamPolarization.z() * fTargetPolarization.z();
145 polL = std::fabs(polL);
146 G4double polT = fBeamPolarization.x() * fTargetPolarization.x() +
147 fBeamPolarization.y() * fTargetPolarization.y();
148 polT = std::fabs(polT);
149
150 G4double kineticEnergy = dp->GetKineticEnergy();
151 G4double energy = kineticEnergy + electron_mass_c2;
152 G4double totalMomentum =
153 std::sqrt(kineticEnergy * (energy + electron_mass_c2));
154 G4double xmin = tmin / kineticEnergy;
155 G4double xmax = tmax / kineticEnergy;
156 G4double gam = energy / electron_mass_c2;
157 G4double gamma2 = gam * gam;
158 G4double gmo = gam - 1.;
159 G4double gmo2 = gmo * gmo;
160 G4double gmo3 = gmo2 * gmo;
161 G4double gpo = gam + 1.;
162 G4double gpo2 = gpo * gpo;
163 G4double gpo3 = gpo2 * gpo;
164 G4double x, y, q, grej, grej2;
165 G4double z = 0.;
166 G4double xs = 0., phi = 0.;
167 G4ThreeVector direction = dp->GetMomentumDirection();
168
169 //(Polarized) Moller (e-e-) scattering
170 if(isElectron)
171 {
172 // *** dice according to polarized cross section
173 G4double G = ((2.0 * gam - 1.0) / gamma2) * (1. - polT - polL * gam);
174 G4double H = (sqr(gam - 1.0) / gamma2) *
175 (1. + polT + polL * ((gam + 3.) / (gam - 1.)));
176
177 y = 1.0 - xmax;
178 grej = 1.0 - G * xmax + xmax * xmax * (H + (1.0 - G * y) / (y * y));
179 grej2 = 1.0 - G * xmin + xmin * xmin * (H + (1.0 - G * y) / (y * y));
180 if(grej2 > grej)
181 grej = grej2;
182 G4double prefM = gamma2 * classic_electr_radius * classic_electr_radius /
183 (gmo2 * (gam + 1.0));
184 grej *= prefM;
185 do
186 {
187 q = G4UniformRand();
188 x = xmin * xmax / (xmin * (1.0 - q) + xmax * q);
189 if(fCrossSectionCalculator)
190 {
191 fCrossSectionCalculator->Initialize(x, gam, phi, fBeamPolarization,
192 fTargetPolarization, 1);
193 xs = fCrossSectionCalculator->XSection(G4StokesVector::ZERO,
195 z = xs * sqr(x) * 4.;
196 if(grej < z)
197 {
199 ed << "WARNING : error in Moller rejection routine! \n"
200 << " z = " << z << " grej=" << grej << "\n";
201 G4Exception("G4PolarizedIonisationModel::SampleSecondaries", "pol019",
202 JustWarning, ed);
203 }
204 }
205 else
206 {
207 G4cout << "No calculator in Moller scattering" << G4endl;
208 }
209 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
210 } while(grej * G4UniformRand() > z);
211 // Bhabha (e+e-) scattering
212 }
213 else
214 {
215 // *** dice according to polarized cross section
216 y = xmax * xmax;
217 grej = 0.;
218 grej += y * y * gmo3 * (1. + (polL + polT) * (gam + 3.) / gmo);
219 grej += -2. * xmin * xmin * xmin * gam * gmo2 *
220 (1. - (polL + polT) * (gam + 3.) / gmo);
221 grej += y * y * gmo * (3. * gamma2 + 6. * gam + 4.) *
222 (1. + (polL * (3. * gam + 1.) * (gamma2 + gam + 1.) +
223 polT * ((gam + 2.) * gamma2 + 1.)) /
224 (gmo * (3. * gam * (gam + 2.) + 4.)));
225 grej /= gpo3;
226 grej += -xmin * (2. * gamma2 + 4. * gam + 1.) *
227 (1. - gam * (polL * (2. * gam + 1.) + polT) /
228 (2. * gam * (gam + 2.) + 1.)) /
229 gpo2;
230 grej += gamma2 / (gamma2 - 1.);
231 G4double prefB =
232 classic_electr_radius * classic_electr_radius / (gam - 1.0);
233 grej *= prefB;
234
235 do
236 {
237 q = G4UniformRand();
238 x = xmin * xmax / (xmin * (1.0 - q) + xmax * q);
239 if(fCrossSectionCalculator)
240 {
241 fCrossSectionCalculator->Initialize(x, gam, phi, fBeamPolarization,
242 fTargetPolarization, 1);
243 xs = fCrossSectionCalculator->XSection(G4StokesVector::ZERO,
245 z = xs * sqr(x) * 4.;
246 }
247 else
248 {
249 G4cout << "No calculator in Bhabha scattering" << G4endl;
250 }
251
252 if(z > grej)
253 {
255 ed << "G4PolarizedIonisationModel::SampleSecondaries Warning!\n "
256 << "Majorant " << grej << " < " << z << " for x= " << x << G4endl
257 << " e+e- (Bhabha) scattering"
258 << " at KinEnergy " << kineticEnergy << G4endl;
259 G4Exception("G4PolarizedIonisationModel::SampleSecondaries", "pol020",
260 JustWarning, ed);
261 }
262 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
263 } while(grej * G4UniformRand() > z);
264 }
265
266 // polar asymmetries (due to transverse polarizations)
267 if(fCrossSectionCalculator)
268 {
269 grej = xs * 2.;
270 do
271 {
272 phi = twopi * G4UniformRand();
273 fCrossSectionCalculator->Initialize(x, gam, phi, fBeamPolarization,
274 fTargetPolarization, 1);
275 xs = fCrossSectionCalculator->XSection(G4StokesVector::ZERO,
277 if(xs > grej)
278 {
279 if(isElectron)
280 {
282 ed << "Majorant " << grej << " < " << xs << " for phi= " << phi
283 << "\n"
284 << " e-e- (Moller) scattering\n"
285 << "PHI DICING\n";
286 G4Exception("G4PolarizedIonisationModel::SampleSecondaries", "pol021",
287 JustWarning, ed);
288 }
289 else
290 {
292 ed << "Majorant " << grej << " < " << xs << " for phi= " << phi
293 << "\n"
294 << " e+e- (Bhabha) scattering\n"
295 << "PHI DICING\n";
296 G4Exception("G4PolarizedIonisationModel::SampleSecondaries", "pol022",
297 JustWarning, ed);
298 }
299 }
300 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
301 } while(grej * G4UniformRand() > xs);
302 }
303
304 // fix kinematics of delta electron
305 G4double deltaKinEnergy = x * kineticEnergy;
306 G4double deltaMomentum =
307 std::sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0 * electron_mass_c2));
308 G4double cost = deltaKinEnergy * (energy + electron_mass_c2) /
309 (deltaMomentum * totalMomentum);
310 G4double sint = 1.0 - cost * cost;
311 if(sint > 0.0)
312 sint = std::sqrt(sint);
313
314 G4ThreeVector deltaDirection(-sint * std::cos(phi), -sint * std::sin(phi),
315 cost);
316 deltaDirection.rotateUz(direction);
317
318 // primary change
319 kineticEnergy -= deltaKinEnergy;
321
322 if(kineticEnergy > DBL_MIN)
323 {
324 G4ThreeVector dir =
325 totalMomentum * direction - deltaMomentum * deltaDirection;
326 direction = dir.unit();
328 }
329
330 // create G4DynamicParticle object for delta ray
331 G4DynamicParticle* delta =
332 new G4DynamicParticle(theElectron, deltaDirection, deltaKinEnergy);
333 vdp->push_back(delta);
334
335 // get interaction frame
336 G4ThreeVector nInteractionFrame =
337 G4PolarizationHelper::GetFrame(direction, deltaDirection);
338
339 if(fCrossSectionCalculator)
340 {
341 // calculate mean final state polarizations
342 fBeamPolarization.InvRotateAz(nInteractionFrame, direction);
343 fTargetPolarization.InvRotateAz(nInteractionFrame, direction);
344 fCrossSectionCalculator->Initialize(x, gam, phi, fBeamPolarization,
345 fTargetPolarization, 2);
346
347 // electron/positron
348 fPositronPolarization = fCrossSectionCalculator->GetPol2();
349 fPositronPolarization.RotateAz(nInteractionFrame, direction);
350
351 fParticleChange->ProposePolarization(fPositronPolarization);
352
353 // electron
354 fElectronPolarization = fCrossSectionCalculator->GetPol3();
355 fElectronPolarization.RotateAz(nInteractionFrame, deltaDirection);
356 delta->SetPolarization(fElectronPolarization.x(), fElectronPolarization.y(),
357 fElectronPolarization.z());
358 }
359 else
360 {
361 fPositronPolarization = G4StokesVector::ZERO;
362 fElectronPolarization = G4StokesVector::ZERO;
363 }
364}
@ JustWarning
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:52
double z() const
Hep3Vector unit() const
double x() const
double y() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
void SetPolarization(const G4ThreeVector &)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
const G4ThreeVector & GetPolarization() const
G4ParticleChangeForLoss * fParticleChange
G4ParticleDefinition * theElectron
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy) final
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void ProposePolarization(const G4ThreeVector &dir)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
static G4ThreeVector GetFrame(const G4ThreeVector &, const G4ThreeVector &)
bool IsPolarized(G4LogicalVolume *lVol) const
const G4StokesVector GetVolumePolarization(G4LogicalVolume *lVol) const
static G4PolarizationManager * GetInstance()
virtual ~G4PolarizedIonisationModel() override
G4PolarizedIonisationModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="PolarizedMollerBhabha")
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kinEnergy, G4double cut, G4double emax) override
static const G4StokesVector ZERO
void InvRotateAz(G4ThreeVector nInteractionFrame, G4ThreeVector particleDirection)
void RotateAz(G4ThreeVector nInteractionFrame, G4ThreeVector particleDirection)
G4VPhysicalVolume * GetVolume() const
G4double MaxSecondaryKinEnergy(const G4DynamicParticle *dynParticle)
Definition: G4VEmModel.hh:501
const G4Track * GetCurrentTrack() const
G4LogicalVolume * GetLogicalVolume() const
virtual void Initialize(G4double, G4double, G4double, const G4StokesVector &p0, const G4StokesVector &p1, G4int flag=0)=0
virtual G4double XSection(const G4StokesVector &pol2, const G4StokesVector &pol3)=0
virtual G4double TotalXSection(G4double xmin, G4double xmax, G4double y, const G4StokesVector &pol0, const G4StokesVector &pol1)
virtual G4StokesVector GetPol2()
virtual G4StokesVector GetPol3()
T sqr(const T &x)
Definition: templates.hh:128
#define DBL_MIN
Definition: templates.hh:54