Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4MuPairProductionModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4MuPairProductionModel
33//
34// Author: Vladimir Ivanchenko on base of Laszlo Urban code
35//
36// Creation date: 24.06.2002
37//
38// Modifications:
39//
40// 04-12-02 Change G4DynamicParticle constructor in PostStep (V.Ivanchenko)
41// 23-12-02 Change interface in order to move to cut per region (V.Ivanchenko)
42// 24-01-03 Fix for compounds (V.Ivanchenko)
43// 27-01-03 Make models region aware (V.Ivanchenko)
44// 13-02-03 Add model (V.Ivanchenko)
45// 06-06-03 Fix in cross section calculation for high energy (V.Ivanchenko)
46// 20-10-03 2*xi in ComputeDDMicroscopicCrossSection (R.Kokoulin)
47// 8 integration points in ComputeDMicroscopicCrossSection
48// 12-01-04 Take min cut of e- and e+ not its sum (V.Ivanchenko)
49// 10-02-04 Update parameterisation using R.Kokoulin model (V.Ivanchenko)
50// 28-04-04 For complex materials repeat calculation of max energy for each
51// material (V.Ivanchenko)
52// 01-11-04 Fix bug inside ComputeDMicroscopicCrossSection (R.Kokoulin)
53// 08-04-05 Major optimisation of internal interfaces (V.Ivantchenko)
54// 03-08-05 Add SetParticle method (V.Ivantchenko)
55// 23-10-05 Add protection in sampling of e+e- pair energy needed for
56// low cuts (V.Ivantchenko)
57// 13-02-06 Add ComputeCrossSectionPerAtom (mma)
58// 24-04-07 Add protection in SelectRandomAtom method (V.Ivantchenko)
59// 12-05-06 Updated sampling (use cut) in SelectRandomAtom (A.Bogdanov)
60// 11-10-07 Add ignoreCut flag (V.Ivanchenko)
61
62//
63// Class Description:
64//
65//
66// -------------------------------------------------------------------
67//
68//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
69//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
70
73#include "G4SystemOfUnits.hh"
74#include "G4EmParameters.hh"
75#include "G4Electron.hh"
76#include "G4Positron.hh"
77#include "G4MuonMinus.hh"
78#include "G4MuonPlus.hh"
79#include "Randomize.hh"
80#include "G4Material.hh"
81#include "G4Element.hh"
82#include "G4ElementVector.hh"
85#include "G4ModifiedMephi.hh"
86#include "G4Log.hh"
87#include "G4Exp.hh"
88#include <iostream>
89#include <fstream>
90
91//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
92
93// static members
94//
95static const G4double ak1 = 6.9;
96static const G4double ak2 = 1.0;
97static const G4int nzdat = 5;
98static const G4int zdat[5] = {1, 4, 13, 29, 92};
99
100static const G4double xgi[] =
101{ 0.0198550717512320, 0.1016667612931865, 0.2372337950418355, 0.4082826787521750,
102 0.5917173212478250, 0.7627662049581645, 0.8983332387068135, 0.9801449282487680 };
103
104static const G4double wgi[] =
105{ 0.0506142681451880, 0.1111905172266870, 0.1568533229389435, 0.1813418916891810,
106 0.1813418916891810, 0.1568533229389435, 0.1111905172266870, 0.0506142681451880 };
107
108//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
109
110using namespace std;
111
113 const G4String& nam)
114 : G4VEmModel(nam),
115 factorForCross(CLHEP::fine_structure_const*CLHEP::fine_structure_const*
116 CLHEP::classic_electr_radius*CLHEP::classic_electr_radius*
117 4./(3.*CLHEP::pi)),
118 sqrte(sqrt(G4Exp(1.))),
119 minPairEnergy(4.*CLHEP::electron_mass_c2),
120 lowestKinEnergy(0.85*CLHEP::GeV)
121{
123
124 theElectron = G4Electron::Electron();
125 thePositron = G4Positron::Positron();
126
127 if(nullptr != p) {
128 SetParticle(p);
129 lowestKinEnergy = std::max(lowestKinEnergy, p->GetPDGMass()*8.0);
130 }
132 emax = emin*10000.;
134}
135
136//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
137
140 G4double cut)
141{
142 return std::max(lowestKinEnergy, cut);
143}
144
145//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
146
148 const G4DataVector& cuts)
149{
150 SetParticle(p);
151
152 if(nullptr == fParticleChange) {
154 }
155
156 // for low-energy application this process should not work
157 if(lowestKinEnergy >= HighEnergyLimit()) { return; }
158
159 // define scale of internal table for each thread only once
160 if(0 == nbine) {
161 emin = std::max(lowestKinEnergy, LowEnergyLimit());
162 emax = std::max(HighEnergyLimit(), emin*2);
163 nbine = size_t(nYBinPerDecade*std::log10(emax/emin));
164 if(nbine < 3) { nbine = 3; }
165
167 dy = -ymin/G4double(nbiny);
168 }
169
170 if(IsMaster() && p == particle) {
171 if(nullptr == fElementData) {
174 if(dataFile) { dataFile = RetrieveTables(); }
175 if(!dataFile) { MakeSamplingTables(); }
176 if(fTableToFile) { StoreTables(); }
177 }
179 }
180}
181
182//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
183
185 G4VEmModel* masterModel)
186{
189 fElementData = masterModel->GetElementData();
190 }
191}
192
193//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
194
196 const G4Material* material,
198 G4double kineticEnergy,
199 G4double cutEnergy)
200{
201 G4double dedx = 0.0;
202 if (cutEnergy <= minPairEnergy || kineticEnergy <= lowestKinEnergy)
203 { return dedx; }
204
205 const G4ElementVector* theElementVector = material->GetElementVector();
206 const G4double* theAtomicNumDensityVector =
207 material->GetAtomicNumDensityVector();
208
209 // loop for elements in the material
210 for (size_t i=0; i<material->GetNumberOfElements(); ++i) {
211 G4double Z = (*theElementVector)[i]->GetZ();
212 G4double tmax = MaxSecondaryEnergyForElement(kineticEnergy, Z);
213 G4double loss = ComputMuPairLoss(Z, kineticEnergy, cutEnergy, tmax);
214 dedx += loss*theAtomicNumDensityVector[i];
215 }
216 dedx = std::max(dedx, 0.0);
217 return dedx;
218}
219
220//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
221
223 G4double tkin,
224 G4double cutEnergy,
225 G4double tmax)
226{
227 G4double loss = 0.0;
228
229 G4double cut = std::min(cutEnergy, tmax);
230 if(cut <= minPairEnergy) { return loss; }
231
232 // calculate the rectricted loss
233 // numerical integration in log(PairEnergy)
235 G4double bbb = G4Log(cut);
236
237 G4int kkk = G4lrint((bbb-aaa)/ak1+ak2);
238 if(kkk > 8) { kkk = 8; }
239 else if (kkk < 1) { kkk = 1; }
240 G4double hhh = (bbb-aaa)/kkk;
241 G4double x = aaa;
242
243 for (G4int l=0 ; l<kkk; ++l) {
244 for (G4int ll=0; ll<8; ++ll) {
245 G4double ep = G4Exp(x+xgi[ll]*hhh);
246 loss += wgi[ll]*ep*ep*ComputeDMicroscopicCrossSection(tkin, Z, ep);
247 }
248 x += hhh;
249 }
250 loss *= hhh;
251 loss = std::max(loss, 0.0);
252 return loss;
253}
254
255//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
256
258 G4double tkin,
259 G4double Z,
260 G4double cutEnergy)
261{
262 G4double cross = 0.;
264 G4double cut = std::max(cutEnergy, minPairEnergy);
265 if (tmax <= cut) { return cross; }
266
267 G4double aaa = G4Log(cut);
268 G4double bbb = G4Log(tmax);
269 G4int kkk = G4lrint((bbb-aaa)/ak1 + ak2);
270 if(kkk > 8) { kkk = 8; }
271 else if (kkk < 1) { kkk = 1; }
272
273 G4double hhh = (bbb-aaa)/(kkk);
274 G4double x = aaa;
275
276 for(G4int l=0; l<kkk; ++l) {
277 for(G4int i=0; i<8; ++i) {
278 G4double ep = G4Exp(x + xgi[i]*hhh);
279 cross += ep*wgi[i]*ComputeDMicroscopicCrossSection(tkin, Z, ep);
280 }
281 x += hhh;
282 }
283
284 cross *= hhh;
285 cross = std::max(cross, 0.0);
286 return cross;
287}
288
289//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
290
292 G4double tkin,
293 G4double Z,
294 G4double pairEnergy)
295// Calculates the differential (D) microscopic cross section
296// using the cross section formula of R.P. Kokoulin (18/01/98)
297// Code modified by R.P. Kokoulin, V.N. Ivanchenko (27/01/04)
298{
299 static const G4double bbbtf= 183. ;
300 static const G4double bbbh = 202.4 ;
301 static const G4double g1tf = 1.95e-5 ;
302 static const G4double g2tf = 5.3e-5 ;
303 static const G4double g1h = 4.4e-5 ;
304 static const G4double g2h = 4.8e-5 ;
305
306 if (pairEnergy <= minPairEnergy)
307 return 0.0;
308
309 G4double totalEnergy = tkin + particleMass;
310 G4double residEnergy = totalEnergy - pairEnergy;
311
312 if (residEnergy <= 0.75*sqrte*z13*particleMass)
313 return 0.0;
314
315 G4double a0 = 1.0 / (totalEnergy * residEnergy);
316 G4double alf = 4.0 * electron_mass_c2 / pairEnergy;
317 G4double rt = sqrt(1.0 - alf);
318 G4double delta = 6.0 * particleMass * particleMass * a0;
319 G4double tmnexp = alf/(1.0 + rt) + delta*rt;
320
321 if(tmnexp >= 1.0) { return 0.0; }
322
323 G4double tmn = G4Log(tmnexp);
324
325 G4double massratio = particleMass/electron_mass_c2;
326 G4double massratio2 = massratio*massratio;
327 G4double inv_massratio2 = 1.0 / massratio2;
328
329 // zeta calculation
330 G4double bbb,g1,g2;
331 if( Z < 1.5 ) { bbb = bbbh ; g1 = g1h ; g2 = g2h ; }
332 else { bbb = bbbtf; g1 = g1tf; g2 = g2tf; }
333
334 G4double zeta = 0.0;
335 G4double z1exp = totalEnergy / (particleMass + g1*z23*totalEnergy);
336
337 // 35.221047195922 is the root of zeta1(x) = 0.073 * log(x) - 0.26, so the
338 // condition below is the same as zeta1 > 0.0, but without calling log(x)
339 if (z1exp > 35.221047195922)
340 {
341 G4double z2exp = totalEnergy / (particleMass + g2*z13*totalEnergy);
342 zeta = (0.073 * G4Log(z1exp) - 0.26) / (0.058 * G4Log(z2exp) - 0.14);
343 }
344
345 G4double z2 = Z*(Z+zeta);
346 G4double screen0 = 2.*electron_mass_c2*sqrte*bbb/(z13*pairEnergy);
347 G4double beta = 0.5*pairEnergy*pairEnergy*a0;
348 G4double xi0 = 0.5*massratio2*beta;
349
350 // Gaussian integration in ln(1-ro) ( with 8 points)
351 G4double rho[8];
352 G4double rho2[8];
353 G4double xi[8];
354 G4double xi1[8];
355 G4double xii[8];
356
357 for (G4int i = 0; i < 8; ++i)
358 {
359 rho[i] = G4Exp(tmn*xgi[i]) - 1.0; // rho = -asymmetry
360 rho2[i] = rho[i] * rho[i];
361 xi[i] = xi0*(1.0-rho2[i]);
362 xi1[i] = 1.0 + xi[i];
363 xii[i] = 1.0 / xi[i];
364 }
365
366 G4double ye1[8];
367 G4double ym1[8];
368
369 G4double b40 = 4.0 * beta;
370 G4double b62 = 6.0 * beta + 2.0;
371
372 for (G4int i = 0; i < 8; ++i)
373 {
374 G4double yeu = (b40 + 5.0) + (b40 - 1.0) * rho2[i];
375 G4double yed = b62*G4Log(3.0 + xii[i]) + (2.0 * beta - 1.0)*rho2[i] - b40;
376
377 G4double ymu = b62 * (1.0 + rho2[i]) + 6.0;
378 G4double ymd = (b40 + 3.0)*(1.0 + rho2[i])*G4Log(3.0 + xi[i])
379 + 2.0 - 3.0 * rho2[i];
380
381 ye1[i] = 1.0 + yeu / yed;
382 ym1[i] = 1.0 + ymu / ymd;
383 }
384
385 G4double be[8];
386 G4double bm[8];
387
388 for(G4int i = 0; i < 8; ++i) {
389 if(xi[i] <= 1000.0) {
390 be[i] = ((2.0 + rho2[i])*(1.0 + beta) +
391 xi[i]*(3.0 + rho2[i]))*G4Log(1.0 + xii[i]) +
392 (1.0 - rho2[i] - beta)/xi1[i] - (3.0 + rho2[i]);
393 } else {
394 be[i] = 0.5*(3.0 - rho2[i] + 2.0*beta*(1.0 + rho2[i]))*xii[i];
395 }
396
397 if(xi[i] >= 0.001) {
398 G4double a10 = (1.0 + 2.0 * beta) * (1.0 - rho2[i]);
399 bm[i] = ((1.0 + rho2[i])*(1.0 + 1.5 * beta) - a10*xii[i])*G4Log(xi1[i]) +
400 xi[i] * (1.0 - rho2[i] - beta)/xi1[i] + a10;
401 } else {
402 bm[i] = 0.5*(5.0 - rho2[i] + beta * (3.0 + rho2[i]))*xi[i];
403 }
404 }
405
406 G4double sum = 0.0;
407
408 for (G4int i = 0; i < 8; ++i) {
409 G4double screen = screen0*xi1[i]/(1.0 - rho2[i]);
410 G4double ale = G4Log(bbb/z13*sqrt(xi1[i]*ye1[i])/(1. + screen*ye1[i]));
411 G4double cre = 0.5*G4Log(1. + 2.25*z23*xi1[i]*ye1[i]*inv_massratio2);
412
413 G4double fe = (ale-cre)*be[i];
414 fe = std::max(fe, 0.0);
415
416 G4double alm_crm = G4Log(bbb*massratio/(1.5*z23*(1. + screen*ym1[i])));
417 G4double fm = std::max(alm_crm*bm[i], 0.0)*inv_massratio2;
418
419 sum += wgi[i]*(1.0 + rho[i])*(fe + fm);
420 }
421
422 return -tmn*sum*factorForCross*z2*residEnergy/(totalEnergy*pairEnergy);
423}
424
425//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
426
429 G4double kineticEnergy,
431 G4double cutEnergy,
432 G4double maxEnergy)
433{
434 G4double cross = 0.0;
435 if (kineticEnergy <= lowestKinEnergy) { return cross; }
436
437 G4double maxPairEnergy = MaxSecondaryEnergyForElement(kineticEnergy, Z);
438 G4double tmax = std::min(maxEnergy, maxPairEnergy);
439 G4double cut = std::max(cutEnergy, minPairEnergy);
440 if (cut >= tmax) { return cross; }
441
442 cross = ComputeMicroscopicCrossSection(kineticEnergy, Z, cut);
443 if(tmax < kineticEnergy) {
444 cross -= ComputeMicroscopicCrossSection(kineticEnergy, Z, tmax);
445 }
446 return cross;
447}
448
449//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
450
452{
454
455 for (G4int iz=0; iz<nzdat; ++iz) {
456
457 G4double Z = zdat[iz];
459 G4double kinEnergy = emin;
460
461 for (size_t it=0; it<=nbine; ++it) {
462
463 pv->PutY(it, G4Log(kinEnergy/CLHEP::MeV));
464 G4double maxPairEnergy = MaxSecondaryEnergyForElement(kinEnergy, Z);
465 /*
466 G4cout << "it= " << it << " E= " << kinEnergy
467 << " " << particle->GetParticleName()
468 << " maxE= " << maxPairEnergy << " minE= " << minPairEnergy
469 << " ymin= " << ymin << G4endl;
470 */
471 G4double coef = G4Log(minPairEnergy/kinEnergy)/ymin;
472 G4double ymax = G4Log(maxPairEnergy/kinEnergy)/coef;
473 G4double fac = (ymax - ymin)/dy;
474 size_t imax = (size_t)fac;
475 fac -= (G4double)imax;
476
477 G4double xSec = 0.0;
478 G4double x = ymin;
479 /*
480 G4cout << "Z= " << currentZ << " z13= " << z13
481 << " mE= " << maxPairEnergy << " ymin= " << ymin
482 << " dy= " << dy << " c= " << coef << G4endl;
483 */
484 // start from zero
485 pv->PutValue(0, it, 0.0);
486 if(0 == it) { pv->PutX(nbiny, 0.0); }
487
488 for (size_t i=0; i<nbiny; ++i) {
489
490 if(0 == it) { pv->PutX(i, x); }
491
492 if(i < imax) {
493 G4double ep = kinEnergy*G4Exp(coef*(x + dy*0.5));
494
495 // not multiplied by interval, because table
496 // will be used only for sampling
497 //G4cout << "i= " << i << " x= " << x << "E= " << kinEnergy
498 // << " Egamma= " << ep << G4endl;
499 xSec += ep*ComputeDMicroscopicCrossSection(kinEnergy, Z, ep);
500
501 // last bin before the kinematic limit
502 } else if(i == imax) {
503 G4double ep = kinEnergy*G4Exp(coef*(x + fac*dy*0.5));
504 xSec += ep*fac*ComputeDMicroscopicCrossSection(kinEnergy, Z, ep);
505 }
506 pv->PutValue(i + 1, it, xSec);
507 x += dy;
508 }
509 kinEnergy *= factore;
510
511 // to avoid precision lost
512 if(it+1 == nbine) { kinEnergy = emax; }
513 }
514 fElementData->InitialiseForElement(zdat[iz], pv);
515 }
516}
517
518//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
519
521 std::vector<G4DynamicParticle*>* vdp,
522 const G4MaterialCutsCouple* couple,
523 const G4DynamicParticle* aDynamicParticle,
524 G4double tmin,
525 G4double tmax)
526{
527 G4double kinEnergy = aDynamicParticle->GetKineticEnergy();
528 //G4cout << "------- G4MuPairProductionModel::SampleSecondaries E(MeV)= "
529 // << kinEnergy << " "
530 // << aDynamicParticle->GetDefinition()->GetParticleName() << G4endl;
531 G4double totalEnergy = kinEnergy + particleMass;
532 G4double totalMomentum =
533 sqrt(kinEnergy*(kinEnergy + 2.0*particleMass));
534
535 G4ThreeVector partDirection = aDynamicParticle->GetMomentumDirection();
536
537 // select randomly one element constituing the material
538 const G4Element* anElement = SelectRandomAtom(couple,particle,kinEnergy);
539
540 // define interval of energy transfer
541 G4double maxPairEnergy = MaxSecondaryEnergyForElement(kinEnergy,
542 anElement->GetZ());
543 G4double maxEnergy = std::min(tmax, maxPairEnergy);
544 G4double minEnergy = std::max(tmin, minPairEnergy);
545
546 if(minEnergy >= maxEnergy) { return; }
547 //G4cout << "emin= " << minEnergy << " emax= " << maxEnergy
548 // << " minPair= " << minPairEnergy << " maxpair= " << maxPairEnergy
549 // << " ymin= " << ymin << " dy= " << dy << G4endl;
550
551 G4double coeff = G4Log(minPairEnergy/kinEnergy)/ymin;
552
553 // compute limits
554 G4double yymin = G4Log(minEnergy/kinEnergy)/coeff;
555 G4double yymax = G4Log(maxEnergy/kinEnergy)/coeff;
556
557 //G4cout << "yymin= " << yymin << " yymax= " << yymax << G4endl;
558
559 // units should not be used, bacause table was built without
560 G4double logTkin = G4Log(kinEnergy/CLHEP::MeV);
561
562 // sample e-e+ energy, pair energy first
563
564 // select sample table via Z
565 G4int iz1(0), iz2(0);
566 for(G4int iz=0; iz<nzdat; ++iz) {
567 if(currentZ == zdat[iz]) {
568 iz1 = iz2 = currentZ;
569 break;
570 } else if(currentZ < zdat[iz]) {
571 iz2 = zdat[iz];
572 if(iz > 0) { iz1 = zdat[iz-1]; }
573 else { iz1 = iz2; }
574 break;
575 }
576 }
577 if(0 == iz1) { iz1 = iz2 = zdat[nzdat-1]; }
578
579 G4double pairEnergy = 0.0;
580 G4int count = 0;
581 //G4cout << "start loop Z1= " << iz1 << " Z2= " << iz2 << G4endl;
582 do {
583 ++count;
584 // sampling using only one random number
585 G4double rand = G4UniformRand();
586
587 G4double x = FindScaledEnergy(iz1, rand, logTkin, yymin, yymax);
588 if(iz1 != iz2) {
589 G4double x2 = FindScaledEnergy(iz2, rand, logTkin, yymin, yymax);
590 G4double lz1= nist->GetLOGZ(iz1);
591 G4double lz2= nist->GetLOGZ(iz2);
592 //G4cout << count << ". x= " << x << " x2= " << x2
593 // << " Z1= " << iz1 << " Z2= " << iz2 << G4endl;
594 x += (x2 - x)*(lnZ - lz1)/(lz2 - lz1);
595 }
596 //G4cout << "x= " << x << " coeff= " << coeff << G4endl;
597 pairEnergy = kinEnergy*G4Exp(x*coeff);
598
599 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
600 } while((pairEnergy < minEnergy || pairEnergy > maxEnergy) && 10 > count);
601
602 //G4cout << "## pairEnergy(GeV)= " << pairEnergy/GeV
603 // << " Etot(GeV)= " << totalEnergy/GeV << G4endl;
604
605 // sample r=(E+-E-)/pairEnergy ( uniformly .....)
606 G4double rmax =
607 (1.-6.*particleMass*particleMass/(totalEnergy*(totalEnergy-pairEnergy)))
608 *sqrt(1.-minPairEnergy/pairEnergy);
609 G4double r = rmax * (-1.+2.*G4UniformRand()) ;
610
611 // compute energies from pairEnergy,r
612 G4double eEnergy = (1.-r)*pairEnergy*0.5;
613 G4double pEnergy = pairEnergy - eEnergy;
614
615 // Sample angles
616 G4ThreeVector eDirection, pDirection;
617 //
618 GetAngularDistribution()->SamplePairDirections(aDynamicParticle,
619 eEnergy, pEnergy,
620 eDirection, pDirection);
621 // create G4DynamicParticle object for e+e-
622 eEnergy = std::max(eEnergy - CLHEP::electron_mass_c2, 0.0);
623 pEnergy = std::max(pEnergy - CLHEP::electron_mass_c2, 0.0);
624 G4DynamicParticle* aParticle1 =
625 new G4DynamicParticle(theElectron,eDirection,eEnergy);
626 G4DynamicParticle* aParticle2 =
627 new G4DynamicParticle(thePositron,pDirection,pEnergy);
628 // Fill output vector
629 vdp->push_back(aParticle1);
630 vdp->push_back(aParticle2);
631
632 // primary change
633 kinEnergy -= pairEnergy;
634 partDirection *= totalMomentum;
635 partDirection -= (aParticle1->GetMomentum() + aParticle2->GetMomentum());
636 partDirection = partDirection.unit();
637
638 // if energy transfer is higher than threshold (very high by default)
639 // then stop tracking the primary particle and create a new secondary
640 if (pairEnergy > SecondaryThreshold()) {
643 G4DynamicParticle* newdp =
644 new G4DynamicParticle(particle, partDirection, kinEnergy);
645 vdp->push_back(newdp);
646 } else { // continue tracking the primary e-/e+ otherwise
649 }
650 //G4cout << "-- G4MuPairProductionModel::SampleSecondaries done" << G4endl;
651}
652
653//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
654
657 G4double logTkin,
658 G4double yymin, G4double yymax)
659{
660 G4double res = yymin;
662 if(nullptr != pv) {
663 G4double pmin = pv->Value(yymin, logTkin);
664 G4double pmax = pv->Value(yymax, logTkin);
665 G4double p0 = pv->Value(0.0, logTkin);
666 if(p0 <= 0.0) { DataCorrupted(Z, logTkin); }
667 else { res = pv->FindLinearX((pmin + rand*(pmax - pmin))/p0, logTkin); }
668 } else {
669 DataCorrupted(Z, logTkin);
670 }
671 return res;
672}
673
674//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
675
677{
679 ed << "G4ElementData is not properly initialized Z= " << Z
680 << " Ekin(MeV)= " << G4Exp(logTkin)
681 << " IsMasterThread= " << IsMaster()
682 << " Model " << GetName();
683 G4Exception("G4MuPairProductionModel::()", "em0033", FatalException, ed, "");
684}
685
686//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
687
689{
690 for (G4int iz=0; iz<nzdat; ++iz) {
691 G4int Z = zdat[iz];
693 if(nullptr == pv) {
694 DataCorrupted(Z, 1.0);
695 return;
696 }
697 std::ostringstream ss;
698 ss << "mupair/" << particle->GetParticleName() << Z << ".dat";
699 std::ofstream outfile(ss.str());
700 pv->Store(outfile);
701 }
702}
703
704//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
705
707{
708 const char* path = G4FindDataDir("G4LEDATA");
709 G4String dir("");
710 if (path) {
711 std::ostringstream ost;
712 ost << path << "/mupair/";
713 dir = ost.str();
714 } else {
715 dir = "./mupair/";
716 }
717
718 for (G4int iz=0; iz<nzdat; ++iz) {
719 G4double Z = zdat[iz];
721 std::ostringstream ss;
722 ss << dir << particle->GetParticleName() << Z << ".dat";
723 std::ifstream infile(ss.str(), std::ios::in);
724 if(!pv->Retrieve(infile)) {
725 delete pv;
726 return false;
727 }
729 }
730 return true;
731}
732
733//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
std::vector< const G4Element * > G4ElementVector
const char * G4FindDataDir(const char *)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
const G4double a0
G4fissionEvent * fe
G4double G4Log(G4double x)
Definition: G4Log.hh:227
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
void InitialiseForElement(G4int Z, G4PhysicsVector *v)
G4Physics2DVector * GetElement2DData(G4int Z)
G4double GetZ() const
Definition: G4Element.hh:131
static G4EmParameters * Instance()
G4bool RetrieveMuDataFromFile() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:185
size_t GetNumberOfElements() const
Definition: G4Material.hh:181
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:211
G4double ComputeMicroscopicCrossSection(G4double tkin, G4double Z, G4double cut)
void SetParticle(const G4ParticleDefinition *)
virtual void DataCorrupted(G4int Z, G4double logTkin) const
G4double ComputMuPairLoss(G4double Z, G4double tkin, G4double cut, G4double tmax)
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy) override
G4MuPairProductionModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="muPairProd")
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel) override
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double FindScaledEnergy(G4int Z, G4double rand, G4double logTkin, G4double yymin, G4double yymax)
virtual G4double ComputeDMicroscopicCrossSection(G4double tkin, G4double Z, G4double pairEnergy)
const G4ParticleDefinition * particle
G4double MinPrimaryEnergy(const G4Material *, const G4ParticleDefinition *, G4double) override
G4ParticleChangeForLoss * fParticleChange
G4double MaxSecondaryEnergyForElement(G4double kineticEnergy, G4double Z)
G4double GetLOGZ(G4int Z) const
static G4NistManager * Instance()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
const G4String & GetParticleName() const
G4bool Retrieve(std::ifstream &fIn)
void PutY(std::size_t idy, G4double value)
void Store(std::ofstream &fOut) const
G4double Value(G4double x, G4double y, std::size_t &lastidx, std::size_t &lastidy) const
void PutValue(std::size_t idx, std::size_t idy, G4double value)
void PutX(std::size_t idx, G4double value)
G4double FindLinearX(G4double rand, G4double y, std::size_t &lastidy) const
static G4Positron * Positron()
Definition: G4Positron.cc:93
virtual void SamplePairDirections(const G4DynamicParticle *dp, G4double elecKinEnergy, G4double posiKinEnergy, G4ThreeVector &dirElectron, G4ThreeVector &dirPositron, G4int Z=0, const G4Material *mat=nullptr)
void SetElementSelectors(std::vector< G4EmElementSelector * > *)
Definition: G4VEmModel.hh:831
G4VEmAngularDistribution * GetAngularDistribution()
Definition: G4VEmModel.hh:600
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:641
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:823
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:634
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:561
G4ElementData * fElementData
Definition: G4VEmModel.hh:420
void SetAngularDistribution(G4VEmAngularDistribution *)
Definition: G4VEmModel.hh:607
const G4String & GetName() const
Definition: G4VEmModel.hh:816
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:139
G4double SecondaryThreshold() const
Definition: G4VEmModel.hh:669
G4ElementData * GetElementData()
Definition: G4VEmModel.hh:842
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:109
void ProposeTrackStatus(G4TrackStatus status)
Definition: DoubConv.h:17
int G4lrint(double ad)
Definition: templates.hh:134