Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4HadronElasticProcess.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Geant4 Hadron Elastic Scattering Process
27//
28// Created 26 July 2012 V.Ivanchenko from G4WHadronElasticProcess
29//
30// Modified:
31// 14-Sep-12 M.Kelsey -- Pass subType code to base ctor
32
33#include <iostream>
34
36#include "G4SystemOfUnits.hh"
37#include "G4Nucleus.hh"
38#include "G4ProcessManager.hh"
45
48 fDiffraction(nullptr), fDiffractionRatio(nullptr)
49{}
50
52{}
53
54void G4HadronElasticProcess::ProcessDescription(std::ostream& outFile) const
55{
56 outFile << "G4HadronElasticProcess handles the elastic scattering of \n"
57 << "hadrons by invoking the following hadronic model(s) and \n"
58 << "hadronic cross section(s).\n";
59}
60
63 const G4Step&)
64{
67 G4double weight = track.GetWeight();
69
70 // For elastic scattering, _any_ result is considered an interaction
72
73 const G4DynamicParticle* dynParticle = track.GetDynamicParticle();
74 G4double kineticEnergy = dynParticle->GetKineticEnergy();
75 G4TrackStatus status = track.GetTrackStatus();
76 if(kineticEnergy == 0.0 || track.GetTrackStatus() != fAlive) {
77 return theTotalResult;
78 }
79
80 const G4Material* material = track.GetMaterial();
81
82 // check only for charged particles
83 if(fXSType != fHadNoIntegral) {
86 theCrossSectionDataStore->ComputeCrossSection(dynParticle, material);
88 // No interaction
89 return theTotalResult;
90 }
91 }
92
93 const G4ParticleDefinition* part = dynParticle->GetDefinition();
94 G4Nucleus* targNucleus = GetTargetNucleusPointer();
95
96 // Select element
97 const G4Element* elm =
98 theCrossSectionDataStore->SampleZandA(dynParticle, material, *targNucleus);
99
100 // Initialize the hadronic projectile from the track
101 G4HadProjectile theProj(track);
102 G4HadronicInteraction* hadi = nullptr;
103 G4HadFinalState* result = nullptr;
104
105 if(nullptr != fDiffraction) {
106 G4double ratio =
107 fDiffractionRatio->ComputeRatio(part, kineticEnergy,
108 targNucleus->GetZ_asInt(),
109 targNucleus->GetA_asInt());
110 // diffraction is chosen
111 if(ratio > 0.0 && G4UniformRand() < ratio)
112 {
113 try
114 {
115 result = fDiffraction->ApplyYourself(theProj, *targNucleus);
116 }
117 catch(G4HadronicException & aR)
118 {
120 aR.Report(ed);
121 ed << "Call for " << fDiffraction->GetModelName() << G4endl;
122 ed << part->GetParticleName()
123 << " off target element " << elm->GetName() << " Z= "
124 << targNucleus->GetZ_asInt()
125 << " A= " << targNucleus->GetA_asInt() << G4endl;
126 DumpState(track,"ApplyYourself",ed);
127 ed << " ApplyYourself failed" << G4endl;
128 G4Exception("G4HadronElasticProcess::PostStepDoIt", "had006",
129 FatalException, ed);
130 }
131 // Check the result for catastrophic energy non-conservation
132 result = CheckResult(theProj, *targNucleus, result);
133 result->SetTrafoToLab(theProj.GetTrafoToLab());
134
135 // The following method of the base class takes care also of setting
136 // the creator model ID for the secondaries that are created
137 FillResult(result, track);
138
139 if (epReportLevel != 0) {
140 CheckEnergyMomentumConservation(track, *targNucleus);
141 }
142 return theTotalResult;
143 }
144 }
145
146 // ordinary elastic scattering
147 hadi = ChooseHadronicInteraction( theProj, *targNucleus, material, elm );
148 if(nullptr == hadi) {
150 ed << part->GetParticleName()
151 << " off target element " << elm->GetName() << " Z= "
152 << targNucleus->GetZ_asInt() << " A= "
153 << targNucleus->GetA_asInt() << G4endl;
154 DumpState(track,"ChooseHadronicInteraction",ed);
155 ed << " No HadronicInteraction found out" << G4endl;
156 G4Exception("G4HadronElasticProcess::PostStepDoIt", "had005",
157 FatalException, ed);
158 return theTotalResult;
159 }
160
161 size_t idx = track.GetMaterialCutsCouple()->GetIndex();
163 ->GetEnergyCutsVector(3)))[idx];
164 hadi->SetRecoilEnergyThreshold(tcut);
165 /*
166 if(verboseLevel>1) {
167 G4cout << "G4HadronElasticProcess::PostStepDoIt for "
168 << part->GetParticleName()
169 << " in " << material->GetName()
170 << " Target Z= " << targNucleus->GetZ_asInt()
171 << " A= " << targNucleus->GetA_asInt()
172 << " Tcut(MeV)= " << tcut << G4endl;
173 }
174 */
175 result = hadi->ApplyYourself( theProj, *targNucleus);
176
177 // Check the result for catastrophic energy non-conservation
178 // cannot be applied because is not guranteed that recoil
179 // nucleus is created
180 // result = CheckResult(theProj, targNucleus, result);
181
182 // directions
183 G4ThreeVector indir = track.GetMomentumDirection();
184 G4ThreeVector outdir = result->GetMomentumChange();
185 /*
186 if(verboseLevel>1) {
187 G4cout << "Efin= " << result->GetEnergyChange()
188 << " de= " << result->GetLocalEnergyDeposit()
189 << " nsec= " << result->GetNumberOfSecondaries()
190 << " dir= " << outdir
191 << G4endl;
192 }
193 */
194 // energies
195 G4double edep = std::max(result->GetLocalEnergyDeposit(), 0.0);
196 G4double efinal = std::max(result->GetEnergyChange(), 0.0);
197
198 // primary change
200
201 if(efinal > 0.0) {
202 outdir.rotateUz(indir);
204 } else {
205 if(part->GetProcessManager()->GetAtRestProcessVector()->size() > 0)
206 { status = fStopButAlive; }
207 else { status = fStopAndKill; }
209 }
210 /*
211 G4cout << "Efinal= " << efinal << " TrackStatus= " << status
212 << " time(ns)=" << track.GetGlobalTime()/ns << G4endl;
213 */
215
216 // recoil
217 if(result->GetNumberOfSecondaries() > 0) {
218 G4DynamicParticle* p = result->GetSecondary(0)->GetParticle();
219
220 if(p->GetKineticEnergy() > tcut) {
223 // G4cout << "recoil " << pdir << G4endl;
224 pdir.rotateUz(indir);
225 // G4cout << "recoil rotated " << pdir << G4endl;
226 p->SetMomentumDirection(pdir);
227
228 // in elastic scattering time and weight are not changed
229 G4Track* t = new G4Track(p, track.GetGlobalTime(),
230 track.GetPosition());
231 t->SetWeight(weight);
233 G4int secID = G4PhysicsModelCatalog::GetModelID( "model_" + hadi->GetModelName() );
234 if ( secID > 0 ) t->SetCreatorModelID(secID);
236
237 } else {
238 edep += p->GetKineticEnergy();
239 delete p;
240 }
241 }
244 result->Clear();
245
246 return theTotalResult;
247}
248
250{
251 PrintWarning("G4HadronElasticProcess::SetLowestEnergy(..) ");
252}
253
254void
256{
257 PrintWarning("G4HadronElasticProcess::SetLowestEnergyNeutron(..) ");
258}
259
262{
263 if(hi && xsr) {
264 fDiffraction = hi;
265 fDiffractionRatio = xsr;
266 }
267}
268
269void G4HadronElasticProcess::PrintWarning(const G4String& tit) const
270{
271 G4Exception(tit, "had003", JustWarning,
272 " method is obsolete and will be removed in the next release");
273}
@ JustWarning
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
@ fHadNoIntegral
Definition: G4HadXSTypes.hh:45
@ fHadronElastic
G4TrackStatus
@ fAlive
@ fStopAndKill
@ fStopButAlive
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
#define G4endl
Definition: G4ios.hh:57
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
G4double ComputeCrossSection(const G4DynamicParticle *, const G4Material *)
const G4Element * SampleZandA(const G4DynamicParticle *, const G4Material *, G4Nucleus &target)
void SetMomentumDirection(const G4ThreeVector &aDirection)
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4String & GetName() const
Definition: G4Element.hh:127
G4double GetEnergyChange() const
void SetTrafoToLab(const G4LorentzRotation &aT)
G4double GetLocalEnergyDeposit() const
const G4ThreeVector & GetMomentumChange() const
std::size_t GetNumberOfSecondaries() const
G4HadSecondary * GetSecondary(size_t i)
G4LorentzRotation & GetTrafoToLab()
G4DynamicParticle * GetParticle()
void SetDiffraction(G4HadronicInteraction *, G4VCrossSectionRatio *)
G4HadronElasticProcess(const G4String &procName="hadElastic")
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep) override
void ProcessDescription(std::ostream &outFile) const override
virtual void SetLowestEnergy(G4double)
virtual void SetLowestEnergyNeutron(G4double)
void Report(std::ostream &aS) const
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
const G4String & GetModelName() const
void SetRecoilEnergyThreshold(G4double val)
void FillResult(G4HadFinalState *aR, const G4Track &aT)
G4Nucleus * GetTargetNucleusPointer()
G4HadFinalState * CheckResult(const G4HadProjectile &thePro, const G4Nucleus &targetNucleus, G4HadFinalState *result)
G4ParticleChange * theTotalResult
G4HadronicInteraction * ChooseHadronicInteraction(const G4HadProjectile &aHadProjectile, G4Nucleus &aTargetNucleus, const G4Material *aMaterial, const G4Element *anElement)
G4CrossSectionDataStore * theCrossSectionDataStore
void CheckEnergyMomentumConservation(const G4Track &, const G4Nucleus &)
void DumpState(const G4Track &, const G4String &, G4ExceptionDescription &)
G4int GetA_asInt() const
Definition: G4Nucleus.hh:99
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:105
void AddSecondary(G4Track *aSecondary)
void Initialize(const G4Track &) override
void ProposeEnergy(G4double finalEnergy)
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4ProcessManager * GetProcessManager() const
const G4String & GetParticleName() const
static G4int GetModelID(const G4int modelIndex)
G4ProcessVector * GetAtRestProcessVector(G4ProcessVectorTypeIndex typ=typeGPIL) const
std::size_t size() const
const std::vector< G4double > * GetEnergyCutsVector(std::size_t pcIdx) const
static G4ProductionCutsTable * GetProductionCutsTable()
Definition: G4Step.hh:62
G4TrackStatus GetTrackStatus() const
G4double GetWeight() const
void SetWeight(G4double aValue)
const G4ThreeVector & GetPosition() const
void SetTouchableHandle(const G4TouchableHandle &apValue)
G4double GetGlobalTime() const
G4Material * GetMaterial() const
const G4DynamicParticle * GetDynamicParticle() const
const G4TouchableHandle & GetTouchableHandle() const
const G4ThreeVector & GetMomentumDirection() const
void SetCreatorModelID(const G4int id)
const G4MaterialCutsCouple * GetMaterialCutsCouple() const
virtual G4double ComputeRatio(const G4ParticleDefinition *, G4double kinEnergy, G4int, G4int)=0
void ProposeTrackStatus(G4TrackStatus status)
void ProposeNonIonizingEnergyDeposit(G4double anEnergyPart)
void ProposeWeight(G4double finalWeight)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
void SetNumberOfSecondaries(G4int totSecondaries)
G4double theNumberOfInteractionLengthLeft
Definition: G4VProcess.hh:335
#define DBL_MAX
Definition: templates.hh:62