Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4LETritonInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Hadronic Process: Triton Inelastic Process
27// J.L. Chuma, TRIUMF, 25-Feb-1997
28// J.L. Chuma, 08-May-2001: Update original incident passed back in vec[0]
29// from NuclearReaction
30
32#include "G4SystemOfUnits.hh"
33#include "Randomize.hh"
34#include "G4Electron.hh"
35
36void G4LETritonInelastic::ModelDescription(std::ostream& outFile) const
37{
38 outFile << "G4LETritonInelastic is one of the Low Energy Parameterized\n"
39 << "(LEP) models used to implement inelastic triton scattering\n"
40 << "from nuclei. It is a re-engineered version of the GHEISHA\n"
41 << "code of H. Fesefeldt. It divides the initial collision\n"
42 << "products into backward- and forward-going clusters which are\n"
43 << "then decayed into final state hadrons. The model does not\n"
44 << "conserve energy on an event-by-event basis. It may be\n"
45 << "applied to tritons with initial energies between 0 and 25\n"
46 << "GeV.\n";
47}
48
49
52 G4Nucleus& targetNucleus)
53{
54 G4bool triton_debug = false;
55 if (getenv("TritonLEDebug")) triton_debug = true;
57 const G4HadProjectile *originalIncident = &aTrack;
58 if (triton_debug) G4cout << "entering LETritonInelastic "
59 << originalIncident->GetKineticEnergy() << G4endl;
60 if (originalIncident->GetKineticEnergy() <= 0.1*MeV) {
64 return &theParticleChange;
65 }
66
67 if (verboseLevel > 1) {
68 const G4Material *targetMaterial = aTrack.GetMaterial();
69 G4cout << "G4LETritonInelastic::ApplyYourself called" << G4endl;
70 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
71 G4cout << "target material = " << targetMaterial->GetName() << ", ";
72 }
73
74 if (triton_debug) G4cout << "running LETritonInelastic 1" << G4endl;
75
76 // Work-around for lack of model above 100 MeV
77 if (originalIncident->GetKineticEnergy()/MeV > 100. ||
78 originalIncident->GetKineticEnergy() <= 0.) {
82 return &theParticleChange;
83 }
84
85 if (triton_debug) G4cout << "running LETritonInelastic 2" << G4endl;
86
87 G4double A = targetNucleus.GetA_asInt();
88 G4double Z = targetNucleus.GetZ_asInt();
89 G4double theAtomicMass = targetNucleus.AtomicMass(A, Z);
90 G4double massVec[9];
91 massVec[0] = targetNucleus.AtomicMass( A+3.0, Z+1.0 );
92 massVec[1] = targetNucleus.AtomicMass( A+2.0, Z+1.0 );
93 massVec[2] = targetNucleus.AtomicMass( A+2.0, Z );
94 massVec[3] = targetNucleus.AtomicMass( A+1.0, Z );
95 massVec[4] = theAtomicMass;
96 massVec[5] = massVec[3]; //0.;
97 if (A > 1.0 && Z > 1.0) massVec[5] = targetNucleus.AtomicMass(A-1.0, Z-1.0);
98 massVec[6] = targetNucleus.AtomicMass(A+1.0, Z+1.0);
99 massVec[7] = massVec[3];
100 massVec[8] = massVec[2]; //0.;
101 if (Z > 1.0) massVec[8] = targetNucleus.AtomicMass(A+1.0, Z-1.0);
102
103 G4FastVector<G4ReactionProduct,4> vec; // vec will contain the secondary particles
104 G4int vecLen = 0;
105 vec.Initialize(0);
106
107 if (triton_debug) G4cout << "running LETritonInelastic 3" << G4endl;
108 theReactionDynamics.NuclearReaction(vec, vecLen, originalIncident,
109 targetNucleus, theAtomicMass, massVec);
110 if (triton_debug) G4cout << "running LETritonInelastic 4" << G4endl;
111
112 G4double p = vec[0]->GetMomentum().mag();
113 theParticleChange.SetMomentumChange( vec[0]->GetMomentum()*(1./p) );
114 theParticleChange.SetEnergyChange( vec[0]->GetKineticEnergy() );
115 delete vec[0];
116
117 if (vecLen <= 1) {
121 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
122 return &theParticleChange;
123 }
124
126 for (G4int i = 1; i < vecLen; ++i) {
127 pd = new G4DynamicParticle();
128 pd->SetDefinition( vec[i]->GetDefinition() );
129 pd->SetMomentum( vec[i]->GetMomentum() );
131 delete vec[i];
132 }
133
134 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
135
136 if (triton_debug) G4cout << "leaving LETritonInelastic" << G4endl;
137 return &theParticleChange;
138}
139
140 /* end of file */
141
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
Hep3Vector unit() const
Hep3Vector vect() const
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetMomentum(const G4ThreeVector &momentum)
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void AddSecondary(G4DynamicParticle *aP)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4ReactionDynamics theReactionDynamics
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
virtual void ModelDescription(std::ostream &outFile) const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
const G4String & GetName() const
Definition: G4Material.hh:177
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double AtomicMass(const G4double A, const G4double Z) const
Definition: G4Nucleus.cc:240
void NuclearReaction(G4FastVector< G4ReactionProduct, 4 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4Nucleus &aNucleus, const G4double theAtomicMass, const G4double *massVec)