Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4BoldyshevTripletModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27// GEANT4 tag $Name: $
28//
29//
30// Author: Gerardo Depaola & Francesco Longo
31//
32// History:
33// --------
34// 23-06-2010 First implementation as model
35
36
39#include "G4SystemOfUnits.hh"
40
41//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
42
43using namespace std;
44
45//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
46
48 const G4String& nam)
49 :G4VEmModel(nam),fParticleChange(0),smallEnergy(4.*MeV),isInitialised(false),
50 crossSectionHandler(0),meanFreePathTable(0)
51{
52 lowEnergyLimit = 4.0*electron_mass_c2;
53 highEnergyLimit = 100 * GeV;
54 SetHighEnergyLimit(highEnergyLimit);
55
56 verboseLevel= 0;
57 // Verbosity scale:
58 // 0 = nothing
59 // 1 = warning for energy non-conservation
60 // 2 = details of energy budget
61 // 3 = calculation of cross sections, file openings, sampling of atoms
62 // 4 = entering in methods
63
64 if(verboseLevel > 0) {
65 G4cout << "Triplet Gamma conversion is constructed " << G4endl
66 << "Energy range: "
67 << lowEnergyLimit / MeV << " MeV - "
68 << highEnergyLimit / GeV << " GeV"
69 << G4endl;
70 }
71}
72
73//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
74
76{
77 if (crossSectionHandler) delete crossSectionHandler;
78}
79
80//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
81
82void
84 const G4DataVector&)
85{
86 if (verboseLevel > 3)
87 G4cout << "Calling G4BoldyshevTripletModel::Initialise()" << G4endl;
88
89 if (crossSectionHandler)
90 {
91 crossSectionHandler->Clear();
92 delete crossSectionHandler;
93 }
94
95 // Read data tables for all materials
96
97 crossSectionHandler = new G4CrossSectionHandler();
98 crossSectionHandler->Initialise(0,lowEnergyLimit,100.*GeV,400);
99 G4String crossSectionFile = "tripdata/pp-trip-cs-"; // here only pair in electron field cs should be used
100 crossSectionHandler->LoadData(crossSectionFile);
101
102 //
103
104 if (verboseLevel > 0) {
105 G4cout << "Loaded cross section files for Livermore GammaConversion" << G4endl;
106 G4cout << "To obtain the total cross section this should be used only " << G4endl
107 << "in connection with G4NuclearGammaConversion " << G4endl;
108 }
109
110 if (verboseLevel > 0) {
111 G4cout << "Livermore Electron Gamma Conversion model is initialized " << G4endl
112 << "Energy range: "
113 << LowEnergyLimit() / MeV << " MeV - "
114 << HighEnergyLimit() / GeV << " GeV"
115 << G4endl;
116 }
117
118 if(isInitialised) return;
120 isInitialised = true;
121}
122
123//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
124
127 G4double GammaEnergy,
130{
131 if (verboseLevel > 3) {
132 G4cout << "Calling ComputeCrossSectionPerAtom() of G4BoldyshevTripletModel"
133 << G4endl;
134 }
135 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0;
136
137 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
138 return cs;
139}
140
141//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
142
143void G4BoldyshevTripletModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
144 const G4MaterialCutsCouple* ,
145 const G4DynamicParticle* aDynamicGamma,
146 G4double,
147 G4double)
148{
149
150// The energies of the secondary particles are sampled using
151// a modified Wheeler-Lamb model (see PhysRevD 7 (1973), 26)
152
153 if (verboseLevel > 3)
154 G4cout << "Calling SampleSecondaries() of G4BoldyshevTripletModel" << G4endl;
155
156 G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
157 G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
158
159 G4double epsilon ;
160 G4double p0 = electron_mass_c2;
161
162 G4double positronTotEnergy, electronTotEnergy, thetaEle, thetaPos;
163 G4double ener_re=0., theta_re, phi_re, phi;
164
165 // Calculo de theta - elecron de recoil
166
167 G4double energyThreshold = sqrt(2.)*electron_mass_c2; // -> momentumThreshold_N = 1
168 energyThreshold = 1.1*electron_mass_c2;
169 // G4cout << energyThreshold << G4endl;
170
171 G4double momentumThreshold_c = sqrt(energyThreshold * energyThreshold - electron_mass_c2*electron_mass_c2); // momentun in MeV/c unit
172 G4double momentumThreshold_N = momentumThreshold_c/electron_mass_c2; // momentun in mc unit
173
174 // Calculation of recoil electron production
175
176 G4double SigmaTot = (28./9.) * std::log ( 2.* photonEnergy / electron_mass_c2 ) - 218. / 27. ;
177 G4double X_0 = 2. * ( sqrt(momentumThreshold_N*momentumThreshold_N + 1) -1 );
178 G4double SigmaQ = (82./27. - (14./9.) * log (X_0) + 4./15.*X_0 - 0.0348 * X_0 * X_0);
179 G4double recoilProb = G4UniformRand();
180 //G4cout << "SIGMA TOT " << SigmaTot << " " << "SigmaQ " << SigmaQ << " " << SigmaQ/SigmaTot << " " << recoilProb << G4endl;
181
182 if (recoilProb >= SigmaQ/SigmaTot) // create electron recoil
183 {
184
185 G4double cosThetaMax = ( ( energyThreshold - electron_mass_c2 ) / (momentumThreshold_c) + electron_mass_c2*
186 ( energyThreshold + electron_mass_c2 ) / (photonEnergy*momentumThreshold_c) );
187
188 if (cosThetaMax > 1) G4cout << "ERRORE " << G4endl;
189
190 G4double r1;
191 G4double r2;
192 G4double are, bre, loga, f1_re, greject, cost;
193
194 do {
195 r1 = G4UniformRand();
196 r2 = G4UniformRand();
197 // cost = (pow(4./enern,0.5*r1)) ;
198 cost = pow(cosThetaMax,r1);
199 theta_re = acos(cost);
200 are = 1./(14.*cost*cost);
201 bre = (1.-5.*cost*cost)/(2.*cost);
202 loga = log((1.+ cost)/(1.- cost));
203 f1_re = 1. - bre*loga;
204
205 if ( theta_re >= 4.47*CLHEP::pi/180.)
206 {
207 greject = are*f1_re;
208 } else {
209 greject = 1. ;
210 }
211 } while(greject < r2);
212
213 // Calculo de phi - elecron de recoil
214
215 G4double r3, r4, rt;
216
217 do {
218
219 r3 = G4UniformRand();
220 r4 = G4UniformRand();
221 phi_re = twopi*r3 ;
222 G4double sint2 = 1. - cost*cost ;
223 G4double fp = 1. - sint2*loga/(2.*cost) ;
224 rt = (1.-cos(2.*phi_re)*fp/f1_re)/(2.*pi) ;
225
226 } while(rt < r4);
227
228 // Calculo de la energia - elecron de recoil - relacion momento maximo <-> angulo
229
230 G4double S = electron_mass_c2*(2.* photonEnergy + electron_mass_c2);
231 G4double D2 = 4.*S * electron_mass_c2*electron_mass_c2
232 + (S - electron_mass_c2*electron_mass_c2)
233 *(S - electron_mass_c2*electron_mass_c2)*sin(theta_re)*sin(theta_re);
234 ener_re = electron_mass_c2 * (S + electron_mass_c2*electron_mass_c2)/sqrt(D2);
235
236 // G4cout << "electron de retroceso " << ener_re << " " << theta_re << " " << phi_re << G4endl;
237
238 // Recoil electron creation
239 G4double dxEle_re=sin(theta_re)*std::cos(phi_re),dyEle_re=sin(theta_re)*std::sin(phi_re), dzEle_re=cos(theta_re);
240
241 G4double electronRKineEnergy = std::max(0.,ener_re - electron_mass_c2) ;
242
243 G4ThreeVector electronRDirection (dxEle_re, dyEle_re, dzEle_re);
244 electronRDirection.rotateUz(photonDirection);
245
247 electronRDirection,
248 electronRKineEnergy);
249 fvect->push_back(particle3);
250
251 }
252 else
253 {
254 // deposito la energia ener_re - electron_mass_c2
255 // G4cout << "electron de retroceso " << ener_re << G4endl;
256 fParticleChange->ProposeLocalEnergyDeposit(ener_re - electron_mass_c2);
257 }
258
259 // Depaola (2004) suggested distribution for e+e- energy
260
261 // G4double t = 0.5*asinh(momentumThreshold_N);
262 G4double t = 0.5*log(momentumThreshold_N + sqrt(momentumThreshold_N*momentumThreshold_N+1));
263
264 G4cout << 0.5*asinh(momentumThreshold_N) << " " << t << G4endl;
265
266 G4double J1 = 0.5*(t*cosh(t)/sinh(t) - log(2.*sinh(t)));
267 G4double J2 = (-2./3.)*log(2.*sinh(t)) + t*cosh(t)/sinh(t) + (sinh(t)-t*pow(cosh(t),3))/(3.*pow(sinh(t),3));
268 G4double b = 2.*(J1-J2)/J1;
269
270 G4double n = 1 - b/6.;
271 G4double re=0.;
272 re = G4UniformRand();
273 G4double a = 0.;
274 G4double b1 = 16. - 3.*b - 36.*b*re*n + 36.*b*pow(re,2.)*pow(n,2.) +
275 6.*pow(b,2.)*re*n;
276 a = pow((b1/b),0.5);
277 G4double c1 = (-6. + 12.*re*n + b + 2*a)*pow(b,2.);
278 epsilon = (pow(c1,1./3.))/(2.*b) + (b-4.)/(2.*pow(c1,1./3.))+0.5;
279
280 G4double photonEnergy1 = photonEnergy - ener_re ; // resto al foton la energia del electron de retro.
281 positronTotEnergy = epsilon*photonEnergy1;
282 electronTotEnergy = photonEnergy1 - positronTotEnergy; // temporarly
283
284 G4double momento_e = sqrt(electronTotEnergy*electronTotEnergy -
285 electron_mass_c2*electron_mass_c2) ;
286 G4double momento_p = sqrt(positronTotEnergy*positronTotEnergy -
287 electron_mass_c2*electron_mass_c2) ;
288
289 thetaEle = acos((sqrt(p0*p0/(momento_e*momento_e) +1.)- p0/momento_e)) ;
290 thetaPos = acos((sqrt(p0*p0/(momento_p*momento_p) +1.)- p0/momento_p)) ;
291 phi = twopi * G4UniformRand();
292
293 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
294 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
295
296
297 // Kinematics of the created pair:
298 // the electron and positron are assumed to have a symetric angular
299 // distribution with respect to the Z axis along the parent photon
300
301 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
302
303 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
304
305 G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
306 electronDirection.rotateUz(photonDirection);
307
309 electronDirection,
310 electronKineEnergy);
311
312 // The e+ is always created (even with kinetic energy = 0) for further annihilation
313 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
314
315 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
316
317 G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
318 positronDirection.rotateUz(photonDirection);
319
320 // Create G4DynamicParticle object for the particle2
322 positronDirection, positronKineEnergy);
323 // Fill output vector
324
325
326 fvect->push_back(particle1);
327 fvect->push_back(particle2);
328
329
330
331
332 // kill incident photon
335
336}
337
338//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
339
340
341
342
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
G4BoldyshevTripletModel(const G4ParticleDefinition *p=0, const G4String &nam="BoldyshevTriplet")
G4ParticleChangeForGamma * fParticleChange
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
void SetProposedKineticEnergy(G4double proposedKinEnergy)
static G4Positron * Positron()
Definition: G4Positron.cc:94
G4double FindValue(G4int Z, G4double e) const
void LoadData(const G4String &dataFile)
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522
void ProposeTrackStatus(G4TrackStatus status)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)