Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4PionDecayMakeSpin.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27//
28
30
31#include "G4Decay.hh"
32#include "G4DecayProducts.hh"
33
34#include "G4RandomDirection.hh"
35
36// constructor
37
39 : G4Decay(processName)
40{
41 // set Process Sub Type
42 SetProcessSubType(static_cast<int>(DECAY_PionMakeSpin));
43
44}
45
47
49 G4DecayProducts* products)
50{
51 // This routine deals only with particles that can decay into a muon
52 // pi+, pi-, K+, K- and K0_long
53
54 // get particle
55
56 const G4DynamicParticle* aParticle = aTrack.GetDynamicParticle();
57 const G4ParticleDefinition* aParticleDef = aParticle->GetDefinition();
58
59 G4ParticleDefinition* aMuonPlus =
61 G4ParticleDefinition* aMuonMinus =
63 G4ParticleDefinition* aPionPlus =
65 G4ParticleDefinition* aPionMinus =
67 G4ParticleDefinition* aKaonPlus =
69 G4ParticleDefinition* aKaonMinus =
71 G4ParticleDefinition* aKaon0Long =
73 G4ParticleDefinition* aNeutrinoMu =
75 G4ParticleDefinition* aAntiNeutrinoMu =
77
78 if( aParticleDef == aPionPlus ||
79 aParticleDef == aPionMinus ||
80 aParticleDef == aKaonPlus ||
81 aParticleDef == aKaonMinus ||
82 aParticleDef == aKaon0Long ) {
83 } else {
84 return;
85 }
86
87 G4DynamicParticle* aMuon = NULL;
88
89 G4double emu(0), eneutrino(0);
90 G4ThreeVector p_muon, p_neutrino;
91
92 G4int numberOfSecondaries = products->entries();
93
94 if (numberOfSecondaries > 0) {
95 for (G4int index=0; index < numberOfSecondaries; index++)
96 {
97 G4DynamicParticle* aSecondary = (*products)[index];
98 const G4ParticleDefinition* aSecondaryDef = aSecondary->GetDefinition();
99
100 if (aSecondaryDef == aMuonPlus ||
101 aSecondaryDef == aMuonMinus ) {
102 // Muon+ or Muon-
103 aMuon = aSecondary;
104 emu = aSecondary->GetTotalEnergy();
105 p_muon = aSecondary->GetMomentum();
106 } else if (aSecondaryDef == aNeutrinoMu ||
107 aSecondaryDef == aAntiNeutrinoMu ) {
108 // Muon-Neutrino / Muon-Anti-Neutrino
109 eneutrino = aSecondary->GetTotalEnergy();
110 p_neutrino = aSecondary->GetMomentum();
111 }
112 }
113 }
114
115 // This routine deals only with decays with a
116 // muon and mu-(anti)neutrinos in the final state
117
118 if (!aMuon) return;
119 if (eneutrino==0||emu==0) return;
120
121 G4ThreeVector spin(0,0,0);
122
123 const G4DynamicParticle* theParentParticle = products->GetParentParticle();
124
125 G4double amass = theParentParticle->GetMass();
126 G4double emmu = aMuonPlus->GetPDGMass();
127
128 if (numberOfSecondaries == 2 ) {
129
130 G4double scale = - (eneutrino - ( p_muon * p_neutrino )/(emu+emmu));
131
132 p_muon = scale * p_muon;
133 p_neutrino = emmu * p_neutrino;
134 spin = p_muon + p_neutrino;
135
136 scale = 2./(amass*amass-emmu*emmu);
137 spin = scale * spin;
138
139 if (aParticle->GetCharge() < 0.0) spin = -spin;
140
141 } else {
142
143 spin = G4RandomDirection();
144
145 }
146
147 spin = spin.unit();
148
149 aMuon->SetPolarization(spin.x(),spin.y(),spin.z());
150
151 return;
152}
@ DECAY_PionMakeSpin
G4ThreeVector G4RandomDirection()
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
double z() const
Hep3Vector unit() const
double x() const
double y() const
G4int entries() const
const G4DynamicParticle * GetParentParticle() const
G4double GetMass() const
G4double GetCharge() const
void SetPolarization(G4double polX, G4double polY, G4double polZ)
G4ParticleDefinition * GetDefinition() const
G4double GetTotalEnergy() const
G4ThreeVector GetMomentum() const
G4ParticleDefinition * FindParticle(G4int PDGEncoding)
static G4ParticleTable * GetParticleTable()
virtual void DaughterPolarization(const G4Track &aTrack, G4DecayProducts *products)
G4PionDecayMakeSpin(const G4String &processName="Decay")
const G4DynamicParticle * GetDynamicParticle() const
void SetProcessSubType(G4int)
Definition: G4VProcess.hh:403