Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4RPGSigmaMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39 if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40 {
44 return &theParticleChange;
45 }
46
47 // create the target particle
48
49 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50
51 if( verboseLevel > 1 )
52 {
53 const G4Material *targetMaterial = aTrack.GetMaterial();
54 G4cout << "G4RPGSigmaMinusInelastic::ApplyYourself called" << G4endl;
55 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
56 G4cout << "target material = " << targetMaterial->GetName() << ", ";
57 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
58 << G4endl;
59 }
60
61 // Fermi motion and evaporation
62 // As of Geant3, the Fermi energy calculation had not been Done
63
64 G4double ek = originalIncident->GetKineticEnergy()/MeV;
65 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
66 G4ReactionProduct modifiedOriginal;
67 modifiedOriginal = *originalIncident;
68
69 G4double tkin = targetNucleus.Cinema( ek );
70 ek += tkin;
71 modifiedOriginal.SetKineticEnergy( ek*MeV );
72 G4double et = ek + amas;
73 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
74 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
75 if( pp > 0.0 )
76 {
77 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
78 modifiedOriginal.SetMomentum( momentum * (p/pp) );
79 }
80 //
81 // calculate black track energies
82 //
83 tkin = targetNucleus.EvaporationEffects( ek );
84 ek -= tkin;
85 modifiedOriginal.SetKineticEnergy( ek*MeV );
86 et = ek + amas;
87 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
88 pp = modifiedOriginal.GetMomentum().mag()/MeV;
89 if( pp > 0.0 )
90 {
91 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92 modifiedOriginal.SetMomentum( momentum * (p/pp) );
93 }
94 G4ReactionProduct currentParticle = modifiedOriginal;
95 G4ReactionProduct targetParticle;
96 targetParticle = *originalTarget;
97 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
98 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
99 G4bool incidentHasChanged = false;
100 G4bool targetHasChanged = false;
101 G4bool quasiElastic = false;
102 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
103 G4int vecLen = 0;
104 vec.Initialize( 0 );
105
106 const G4double cutOff = 0.1;
107 if( originalIncident->GetKineticEnergy()/MeV > cutOff )
108 Cascade( vec, vecLen,
109 originalIncident, currentParticle, targetParticle,
110 incidentHasChanged, targetHasChanged, quasiElastic );
111
112 CalculateMomenta( vec, vecLen,
113 originalIncident, originalTarget, modifiedOriginal,
114 targetNucleus, currentParticle, targetParticle,
115 incidentHasChanged, targetHasChanged, quasiElastic );
116
117 SetUpChange( vec, vecLen,
118 currentParticle, targetParticle,
119 incidentHasChanged );
120
121 delete originalTarget;
122 return &theParticleChange;
123}
124
125
126void G4RPGSigmaMinusInelastic::Cascade(
128 G4int& vecLen,
129 const G4HadProjectile *originalIncident,
130 G4ReactionProduct &currentParticle,
131 G4ReactionProduct &targetParticle,
132 G4bool &incidentHasChanged,
133 G4bool &targetHasChanged,
134 G4bool &quasiElastic )
135{
136 // Derived from H. Fesefeldt's original FORTRAN code CASSM
137 //
138 // SigmaMinus undergoes interaction with nucleon within a nucleus. Check if it is
139 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
140 // occurs and input particle is degraded in energy. No other particles are produced.
141 // If reaction is possible, find the correct number of pions/protons/neutrons
142 // produced using an interpolation to multiplicity data. Replace some pions or
143 // protons/neutrons by kaons or strange baryons according to the average
144 // multiplicity per Inelastic reaction.
145
146 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
147 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
148 const G4double targetMass = targetParticle.GetMass()/MeV;
149 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
150 targetMass*targetMass +
151 2.0*targetMass*etOriginal );
152 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
153 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
154 {
155 quasiElastic = true;
156 return;
157 }
158 static G4bool first = true;
159 const G4int numMul = 1200;
160 const G4int numSec = 60;
161 static G4double protmul[numMul], protnorm[numSec]; // proton constants
162 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
163 // np = number of pi+, nneg = number of pi-, nz = number of pi0
164 G4int counter, nt=0, np=0, nneg=0, nz=0;
165 G4double test;
166 const G4double c = 1.25;
167 const G4double b[] = { 0.70, 0.70 };
168 if( first ) // compute normalization constants, this will only be Done once
169 {
170 first = false;
171 G4int i;
172 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
173 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
174 counter = -1;
175 for( np=0; np<(numSec/3); ++np )
176 {
177 for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
178 {
179 for( nz=0; nz<numSec/3; ++nz )
180 {
181 if( ++counter < numMul )
182 {
183 nt = np+nneg+nz;
184 if( nt>0 && nt<=numSec )
185 {
186 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
187 protnorm[nt-1] += protmul[counter];
188 }
189 }
190 }
191 }
192 }
193 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
194 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
195 counter = -1;
196 for( np=0; np<numSec/3; ++np )
197 {
198 for( nneg=np; nneg<=(np+2); ++nneg )
199 {
200 for( nz=0; nz<numSec/3; ++nz )
201 {
202 if( ++counter < numMul )
203 {
204 nt = np+nneg+nz;
205 if( nt>0 && nt<=numSec )
206 {
207 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
208 neutnorm[nt-1] += neutmul[counter];
209 }
210 }
211 }
212 }
213 }
214 for( i=0; i<numSec; ++i )
215 {
216 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
217 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
218 }
219 } // end of initialization
220
221 const G4double expxu = 82.; // upper bound for arg. of exp
222 const G4double expxl = -expxu; // lower bound for arg. of exp
227
228 // energetically possible to produce pion(s) --> inelastic scattering
229
230 G4double n, anpn;
231 GetNormalizationConstant( availableEnergy, n, anpn );
232 G4double ran = G4UniformRand();
233 G4double dum, excs = 0.0;
234 if( targetParticle.GetDefinition() == aProton )
235 {
236 counter = -1;
237 for( np=0; np<numSec/3 && ran>=excs; ++np )
238 {
239 for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
240 {
241 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
242 {
243 if( ++counter < numMul )
244 {
245 nt = np+nneg+nz;
246 if( nt>0 && nt<=numSec )
247 {
248 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
249 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
250 if( std::fabs(dum) < 1.0 )
251 {
252 if( test >= 1.0e-10 )excs += dum*test;
253 }
254 else
255 excs += dum*test;
256 }
257 }
258 }
259 }
260 }
261 if( ran >= excs ) // 3 previous loops continued to the end
262 {
263 quasiElastic = true;
264 return;
265 }
266 np--; nneg--; nz--;
267 G4int ncht = std::max( 1, np-nneg+2 );
268 switch( ncht )
269 {
270 case 1:
271 if( G4UniformRand() < 0.5 )
272 currentParticle.SetDefinitionAndUpdateE( aLambda );
273 else
274 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
275 incidentHasChanged = true;
276 break;
277 case 2:
278 if( G4UniformRand() >= 0.5 )
279 {
280 if( G4UniformRand() < 0.5 )
281 currentParticle.SetDefinitionAndUpdateE( aLambda );
282 else
283 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
284 incidentHasChanged = true;
285 targetParticle.SetDefinitionAndUpdateE( aNeutron );
286 targetHasChanged = true;
287 }
288 break;
289 default:
290 targetParticle.SetDefinitionAndUpdateE( aNeutron );
291 targetHasChanged = true;
292 break;
293 }
294 }
295 else // target must be a neutron
296 {
297 counter = -1;
298 for( np=0; np<numSec/3 && ran>=excs; ++np )
299 {
300 for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
301 {
302 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
303 {
304 if( ++counter < numMul )
305 {
306 nt = np+nneg+nz;
307 if( nt>0 && nt<=numSec )
308 {
309 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
310 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
311 if( std::fabs(dum) < 1.0 )
312 {
313 if( test >= 1.0e-10 )excs += dum*test;
314 }
315 else
316 excs += dum*test;
317 }
318 }
319 }
320 }
321 }
322 if( ran >= excs ) // 3 previous loops continued to the end
323 {
324 quasiElastic = true;
325 return;
326 }
327 np--; nneg--; nz--;
328 G4int ncht = std::max( 1, np-nneg+3 );
329 switch( ncht )
330 {
331 case 1:
332 if( G4UniformRand() < 0.5 )
333 currentParticle.SetDefinitionAndUpdateE( aLambda );
334 else
335 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
336 incidentHasChanged = true;
337 targetParticle.SetDefinitionAndUpdateE( aProton );
338 targetHasChanged = true;
339 break;
340 case 2:
341 if( G4UniformRand() < 0.5 )
342 {
343 if( G4UniformRand() < 0.5 )
344 currentParticle.SetDefinitionAndUpdateE( aLambda );
345 else
346 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
347 incidentHasChanged = true;
348 }
349 else
350 {
351 targetParticle.SetDefinitionAndUpdateE( aProton );
352 targetHasChanged = true;
353 }
354 break;
355 default:
356 break;
357 }
358 }
359
360 SetUpPions(np, nneg, nz, vec, vecLen);
361 return;
362}
363
364 /* end of file */
365
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:99
const G4double pi