Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4RPGSigmaPlusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28
31#include "G4SystemOfUnits.hh"
32#include "Randomize.hh"
33
36 G4Nucleus &targetNucleus )
37{
38 const G4HadProjectile *originalIncident = &aTrack;
39 if (originalIncident->GetKineticEnergy()<= 0.1*MeV)
40 {
44 return &theParticleChange;
45 }
46
47 // create the target particle
48
49 G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
50
51 if( verboseLevel > 1 )
52 {
53 const G4Material *targetMaterial = aTrack.GetMaterial();
54 G4cout << "G4RPGSigmaPlusInelastic::ApplyYourself called" << G4endl;
55 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
56 G4cout << "target material = " << targetMaterial->GetName() << ", ";
57 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
58 << G4endl;
59 }
60
61 // Fermi motion and evaporation
62 // As of Geant3, the Fermi energy calculation had not been Done
63
64 G4double ek = originalIncident->GetKineticEnergy()/MeV;
65 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
66 G4ReactionProduct modifiedOriginal;
67 modifiedOriginal = *originalIncident;
68
69 G4double tkin = targetNucleus.Cinema( ek );
70 ek += tkin;
71 modifiedOriginal.SetKineticEnergy( ek*MeV );
72 G4double et = ek + amas;
73 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
74 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
75 if( pp > 0.0 )
76 {
77 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
78 modifiedOriginal.SetMomentum( momentum * (p/pp) );
79 }
80 //
81 // calculate black track energies
82 //
83 tkin = targetNucleus.EvaporationEffects( ek );
84 ek -= tkin;
85 modifiedOriginal.SetKineticEnergy( ek*MeV );
86 et = ek + amas;
87 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
88 pp = modifiedOriginal.GetMomentum().mag()/MeV;
89 if( pp > 0.0 )
90 {
91 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92 modifiedOriginal.SetMomentum( momentum * (p/pp) );
93 }
94 G4ReactionProduct currentParticle = modifiedOriginal;
95 G4ReactionProduct targetParticle;
96 targetParticle = *originalTarget;
97 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
98 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
99 G4bool incidentHasChanged = false;
100 G4bool targetHasChanged = false;
101 G4bool quasiElastic = false;
102 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
103 G4int vecLen = 0;
104 vec.Initialize( 0 );
105
106 const G4double cutOff = 0.1;
107 if( currentParticle.GetKineticEnergy()/MeV > cutOff )
108 Cascade( vec, vecLen,
109 originalIncident, currentParticle, targetParticle,
110 incidentHasChanged, targetHasChanged, quasiElastic );
111
112 CalculateMomenta( vec, vecLen,
113 originalIncident, originalTarget, modifiedOriginal,
114 targetNucleus, currentParticle, targetParticle,
115 incidentHasChanged, targetHasChanged, quasiElastic );
116
117 SetUpChange( vec, vecLen,
118 currentParticle, targetParticle,
119 incidentHasChanged );
120
121 delete originalTarget;
122 return &theParticleChange;
123}
124
125void G4RPGSigmaPlusInelastic::Cascade(
127 G4int& vecLen,
128 const G4HadProjectile *originalIncident,
129 G4ReactionProduct &currentParticle,
130 G4ReactionProduct &targetParticle,
131 G4bool &incidentHasChanged,
132 G4bool &targetHasChanged,
133 G4bool &quasiElastic )
134{
135 // Derived from H. Fesefeldt's original FORTRAN code CASSP
136 //
137 // SigmaPlus undergoes interaction with nucleon within a nucleus. Check if it is
138 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
139 // occurs and input particle is degraded in energy. No other particles are produced.
140 // If reaction is possible, find the correct number of pions/protons/neutrons
141 // produced using an interpolation to multiplicity data. Replace some pions or
142 // protons/neutrons by kaons or strange baryons according to the average
143 // multiplicity per inelastic reaction.
144
145 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
146 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
147 const G4double targetMass = targetParticle.GetMass()/MeV;
148 G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
149 targetMass*targetMass +
150 2.0*targetMass*etOriginal );
151 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
152 if( availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV )
153 {
154 quasiElastic = true;
155 return;
156 }
157 static G4bool first = true;
158 const G4int numMul = 1200;
159 const G4int numSec = 60;
160 static G4double protmul[numMul], protnorm[numSec]; // proton constants
161 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
162 // np = number of pi+, nneg = number of pi-, nz = number of pi0
163 G4int counter, nt=0, np=0, nneg=0, nz=0;
164 G4double test;
165 const G4double c = 1.25;
166 const G4double b[] = { 0.7, 0.7 };
167 if( first ) // compute normalization constants, this will only be Done once
168 {
169 first = false;
170 G4int i;
171 for( i=0; i<numMul; ++i )protmul[i] = 0.0;
172 for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
173 counter = -1;
174 for( np=0; np<(numSec/3); ++np )
175 {
176 for( nneg=np; nneg<=(np+2); ++nneg )
177 {
178 for( nz=0; nz<numSec/3; ++nz )
179 {
180 if( ++counter < numMul )
181 {
182 nt = np+nneg+nz;
183 if( nt>0 && nt<=numSec )
184 {
185 protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
186 protnorm[nt-1] += protmul[counter];
187 }
188 }
189 }
190 }
191 }
192 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
193 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
194 counter = -1;
195 for( np=0; np<numSec/3; ++np )
196 {
197 for( nneg=std::max(0,np-1); nneg<=(np+1); ++nneg )
198 {
199 for( nz=0; nz<numSec/3; ++nz )
200 {
201 if( ++counter < numMul )
202 {
203 nt = np+nneg+nz;
204 if( nt>0 && nt<=numSec )
205 {
206 neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
207 neutnorm[nt-1] += neutmul[counter];
208 }
209 }
210 }
211 }
212 }
213 for( i=0; i<numSec; ++i )
214 {
215 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
216 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
217 }
218 } // end of initialization
219
220 const G4double expxu = 82.; // upper bound for arg. of exp
221 const G4double expxl = -expxu; // lower bound for arg. of exp
226 //
227 // energetically possible to produce pion(s) --> inelastic scattering
228 //
229 G4double n, anpn;
230 GetNormalizationConstant( availableEnergy, n, anpn );
231 G4double ran = G4UniformRand();
232 G4double dum, excs = 0.0;
233 if( targetParticle.GetDefinition() == aProton )
234 {
235 counter = -1;
236 for( np=0; np<numSec/3 && ran>=excs; ++np )
237 {
238 for( nneg=np; nneg<=(np+2) && ran>=excs; ++nneg )
239 {
240 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
241 {
242 if( ++counter < numMul )
243 {
244 nt = np+nneg+nz;
245 if( nt>0 && nt<=numSec )
246 {
247 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
248 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
249 if( std::fabs(dum) < 1.0 )
250 {
251 if( test >= 1.0e-10 )excs += dum*test;
252 }
253 else
254 excs += dum*test;
255 }
256 }
257 }
258 }
259 }
260 if( ran >= excs ) // 3 previous loops continued to the end
261 {
262 quasiElastic = true;
263 return;
264 }
265 np--; nneg--; nz--;
266 switch( std::min( 3, std::max( 1, np-nneg+3 ) ) )
267 {
268 case 1:
269 if( G4UniformRand() < 0.5 )
270 currentParticle.SetDefinitionAndUpdateE( aLambda );
271 else
272 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
273 incidentHasChanged = true;
274 targetParticle.SetDefinitionAndUpdateE( aNeutron );
275 targetHasChanged = true;
276 break;
277 case 2:
278 if( G4UniformRand() < 0.5 )
279 {
280 targetParticle.SetDefinitionAndUpdateE( aNeutron );
281 targetHasChanged = true;
282 }
283 else
284 {
285 if( G4UniformRand() < 0.5 )
286 currentParticle.SetDefinitionAndUpdateE( aLambda );
287 else
288 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
289 incidentHasChanged = true;
290 }
291 break;
292 case 3:
293 break;
294 }
295 }
296 else // target must be a neutron
297 {
298 counter = -1;
299 for( np=0; np<numSec/3 && ran>=excs; ++np )
300 {
301 for( nneg=std::max(0,np-1); nneg<=(np+1) && ran>=excs; ++nneg )
302 {
303 for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
304 {
305 if( ++counter < numMul )
306 {
307 nt = np+nneg+nz;
308 if( nt>0 && nt<=numSec )
309 {
310 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
311 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
312 if( std::fabs(dum) < 1.0 )
313 {
314 if( test >= 1.0e-10 )excs += dum*test;
315 }
316 else
317 excs += dum*test;
318 }
319 }
320 }
321 }
322 }
323 if( ran >= excs ) // 3 previous loops continued to the end
324 {
325 quasiElastic = true;
326 return;
327 }
328 np--; nneg--; nz--;
329 switch( std::min( 3, std::max( 1, np-nneg+2 ) ) )
330 {
331 case 1:
332 targetParticle.SetDefinitionAndUpdateE( aProton );
333 targetHasChanged = true;
334 break;
335 case 2:
336 if( G4UniformRand() < 0.5 )
337 {
338 if( G4UniformRand() < 0.5 )
339 {
340 currentParticle.SetDefinitionAndUpdateE( aLambda );
341 incidentHasChanged = true;
342 targetParticle.SetDefinitionAndUpdateE( aProton );
343 targetHasChanged = true;
344 }
345 else
346 {
347 targetParticle.SetDefinitionAndUpdateE( aNeutron );
348 targetHasChanged = true;
349 }
350 }
351 else
352 {
353 if( G4UniformRand() < 0.5 )
354 {
355 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
356 incidentHasChanged = true;
357 targetParticle.SetDefinitionAndUpdateE( aProton );
358 targetHasChanged = true;
359 }
360 }
361 break;
362 case 3:
363 if( G4UniformRand() < 0.5 )
364 currentParticle.SetDefinitionAndUpdateE( aLambda );
365 else
366 currentParticle.SetDefinitionAndUpdateE( aSigmaZero );
367 incidentHasChanged = true;
368 break;
369 }
370 }
371
372 SetUpPions(np, nneg, nz, vec, vecLen);
373 return;
374}
375
376 /* end of file */
377
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
static G4Lambda * Lambda()
Definition: G4Lambda.cc:108
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
static G4SigmaZero * SigmaZero()
Definition: G4SigmaZero.cc:99
const G4double pi