Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4eIonisationCrossSectionHandler.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// -------------------------------------------------------------------
29//
30// GEANT4 Class file
31//
32//
33// File name: G4eIonisationCrossSectionHandler
34//
35// Author: V.Ivanchenko (Vladimir.Ivanchenko@cern.ch)
36//
37// Creation date: 25 Sept 2001
38//
39// Modifications:
40// 10 Oct 2001 M.G. Pia Revision to improve code quality and consistency with design
41// 19 Jul 2002 VI Create composite data set for material
42// 21 Jan 2003 V.Ivanchenko Cut per region
43// 28 Jan 2009 L.Pandola Added public method to make a easier migration of
44// G4LowEnergyIonisation to G4LivermoreIonisationModel
45// 15 Jul 2009 Nicolas A. Karakatsanis
46//
47// - BuildCrossSectionForMaterials method was revised in order to calculate the
48// logarithmic values of the loaded data.
49// It retrieves the data values from the G4EMLOW data files but, then, calculates the
50// respective log values and loads them to seperate data structures.
51// The EM data sets, initialized this way, contain both non-log and log values.
52// These initialized data sets can enhance the computing performance of data interpolation
53// operations
54//
55//
56//
57// -------------------------------------------------------------------
58
60#include "G4SystemOfUnits.hh"
61#include "G4VEnergySpectrum.hh"
62#include "G4DataVector.hh"
67#include "G4VEMDataSet.hh"
68#include "G4EMDataSet.hh"
69#include "G4Material.hh"
71
72
74 const G4VEnergySpectrum* spec, G4VDataSetAlgorithm* alg,
75 G4double emin, G4double emax, G4int nbin)
77 theParam(spec),verbose(0)
78{
79 G4VCrossSectionHandler::Initialise(alg, emin, emax, nbin);
80 interp = new G4LinLogLogInterpolation();
81}
82
83
85{
86 delete interp;
87}
88
89
91 const G4DataVector& energyVector,
92 const G4DataVector* energyCuts)
93{
94 std::vector<G4VEMDataSet*>* set = new std::vector<G4VEMDataSet*>;
95
96 G4DataVector* energies;
97 G4DataVector* cs;
98
99 G4DataVector* log_energies;
100 G4DataVector* log_cs;
101
102 G4int nOfBins = energyVector.size();
103
104 const G4ProductionCutsTable* theCoupleTable=
106 size_t numOfCouples = theCoupleTable->GetTableSize();
107
108 for (size_t mLocal=0; mLocal<numOfCouples; mLocal++) {
109
110 const G4MaterialCutsCouple* couple = theCoupleTable->GetMaterialCutsCouple(mLocal);
111 const G4Material* material= couple->GetMaterial();
112 const G4ElementVector* elementVector = material->GetElementVector();
113 const G4double* nAtomsPerVolume = material->GetAtomicNumDensityVector();
114 G4int nElements = material->GetNumberOfElements();
115
116 if(verbose > 0)
117 {
118 G4cout << "eIonisation CS for " << mLocal << "th material "
119 << material->GetName()
120 << " eEl= " << nElements << G4endl;
121 }
122
123 G4double tcut = (*energyCuts)[mLocal];
124
125 G4VDataSetAlgorithm* algo = interp->Clone();
126 G4VEMDataSet* setForMat = new G4CompositeEMDataSet(algo,1.,1.);
127
128 for (G4int i=0; i<nElements; i++) {
129
130 G4int Z = (G4int) (*elementVector)[i]->GetZ();
131 G4int nShells = NumberOfComponents(Z);
132
133 energies = new G4DataVector;
134 cs = new G4DataVector;
135
136 log_energies = new G4DataVector;
137 log_cs = new G4DataVector;
138
139 G4double density = nAtomsPerVolume[i];
140
141 for (G4int bin=0; bin<nOfBins; bin++) {
142
143 G4double e = energyVector[bin];
144 energies->push_back(e);
145 log_energies->push_back(std::log10(e));
146 G4double value = 0.0;
147 G4double log_value = -300;
148
149 if(e > tcut) {
150 for (G4int n=0; n<nShells; n++) {
151 G4double cross = FindValue(Z, e, n);
152 G4double p = theParam->Probability(Z, tcut, e, e, n);
153 value += cross * p * density;
154
155 if(verbose>0 && mLocal == 0 && e>=1. && e<=0.)
156 {
157 G4cout << "G4eIonCrossSH: e(MeV)= " << e/MeV
158 << " n= " << n
159 << " cross= " << cross
160 << " p= " << p
161 << " value= " << value
162 << " tcut(MeV)= " << tcut/MeV
163 << " rho= " << density
164 << " Z= " << Z
165 << G4endl;
166 }
167
168 }
169 if (value == 0.) value = 1e-300;
170 log_value = std::log10(value);
171 }
172 cs->push_back(value);
173 log_cs->push_back(log_value);
174 }
175 G4VDataSetAlgorithm* algoLocal = interp->Clone();
176
177 //G4VEMDataSet* elSet = new G4EMDataSet(i,energies,cs,algoLocal,1.,1.);
178
179 G4VEMDataSet* elSet = new G4EMDataSet(i,energies,cs,log_energies,log_cs,algoLocal,1.,1.);
180
181 setForMat->AddComponent(elSet);
182 }
183 set->push_back(setForMat);
184 }
185
186 return set;
187}
188
190 G4double cutEnergy,
191 G4int Z)
192{
193 G4int nShells = NumberOfComponents(Z);
194 G4double value = 0.;
195 if(energy > cutEnergy)
196 {
197 for (G4int n=0; n<nShells; n++) {
198 G4double cross = FindValue(Z, energy, n);
199 G4double p = theParam->Probability(Z, cutEnergy, energy, energy, n);
200 value += cross * p;
201 }
202 }
203 return value;
204}
std::vector< G4Element * > G4ElementVector
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
const G4Material * GetMaterial() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:189
size_t GetNumberOfElements() const
Definition: G4Material.hh:185
const G4double * GetAtomicNumDensityVector() const
Definition: G4Material.hh:215
const G4String & GetName() const
Definition: G4Material.hh:177
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
static G4ProductionCutsTable * GetProductionCutsTable()
G4double FindValue(G4int Z, G4double e) const
G4int NumberOfComponents(G4int Z) const
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
virtual G4VDataSetAlgorithm * Clone() const =0
virtual void AddComponent(G4VEMDataSet *dataSet)=0
virtual G4double Probability(G4int Z, G4double minKineticEnergy, G4double maxKineticEnergy, G4double kineticEnergy, G4int shell=0, const G4ParticleDefinition *pd=0) const =0
G4double GetCrossSectionAboveThresholdForElement(G4double energy, G4double cutEnergy, G4int Z)
G4eIonisationCrossSectionHandler(const G4VEnergySpectrum *spec, G4VDataSetAlgorithm *alg, G4double emin, G4double emax, G4int nbin)
std::vector< G4VEMDataSet * > * BuildCrossSectionsForMaterials(const G4DataVector &energyVector, const G4DataVector *energyCuts)