Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4LEAntiOmegaMinusInelastic.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Hadronic Process: AntiOmegaMinus Inelastic Process
29// J.L. Chuma, TRIUMF, 20-Feb-1997
30// Modified by J.L.Chuma 30-Apr-97: added originalTarget for CalculateMomenta
31//
32// NOTE: The FORTRAN version of the cascade, CASAOM, simply called the
33// routine for the OmegaMinus particle. Hence, the Cascade function
34// below is just a copy of the Cascade from the OmegaMinus particle.
35
38#include "G4SystemOfUnits.hh"
39#include "Randomize.hh"
40
41void G4LEAntiOmegaMinusInelastic::ModelDescription(std::ostream& outFile) const
42{
43 outFile << "G4LEAntiOmegaMinusInelastic is one of the Low Energy\n"
44 << "Parameterized (LEP) models used to implement inelastic\n"
45 << "antiOmega- scattering from nuclei. It is a re-engineered\n"
46 << "version of the GHEISHA code of H. Fesefeldt. It divides the\n"
47 << "initial collision products into backward- and forward-going\n"
48 << "clusters which are then decayed into final state hadrons. The\n"
49 << "model does not conserve energy on an event-by-event basis. It\n"
50 << "may be applied to antiOmega- with initial energies between 0\n"
51 << "and 25 GeV.\n";
52}
53
56 G4Nucleus& targetNucleus)
57{
58 const G4HadProjectile* originalIncident = &aTrack;
59 if (originalIncident->GetKineticEnergy()<= 0.1*MeV) {
63 return &theParticleChange;
64 }
65
66 // create the target particle
67 G4DynamicParticle* originalTarget = targetNucleus.ReturnTargetParticle();
68
69 if (verboseLevel > 1) {
70 const G4Material *targetMaterial = aTrack.GetMaterial();
71 G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
72 G4cout << "target material = " << targetMaterial->GetName() << ", ";
73 G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
74 << G4endl;
75 }
76
77 // Fermi motion and evaporation
78 // As of Geant3, the Fermi energy calculation had not been Done
79 G4double ek = originalIncident->GetKineticEnergy()/MeV;
80 G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
81 G4ReactionProduct modifiedOriginal;
82 modifiedOriginal = *originalIncident;
83
84 G4double tkin = targetNucleus.Cinema( ek );
85 ek += tkin;
86 modifiedOriginal.SetKineticEnergy( ek*MeV );
87 G4double et = ek + amas;
88 G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
89 G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
90 if (pp > 0.0) {
91 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
92 modifiedOriginal.SetMomentum( momentum * (p/pp) );
93 }
94
95 // calculate black track energies
96 tkin = targetNucleus.EvaporationEffects( ek );
97 ek -= tkin;
98 modifiedOriginal.SetKineticEnergy( ek*MeV );
99 et = ek + amas;
100 p = std::sqrt( std::abs((et-amas)*(et+amas)) );
101 pp = modifiedOriginal.GetMomentum().mag()/MeV;
102 if (pp > 0.0) {
103 G4ThreeVector momentum = modifiedOriginal.GetMomentum();
104 modifiedOriginal.SetMomentum( momentum * (p/pp) );
105 }
106 G4ReactionProduct currentParticle = modifiedOriginal;
107 G4ReactionProduct targetParticle;
108 targetParticle = *originalTarget;
109 currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
110 targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
111 G4bool incidentHasChanged = false;
112 G4bool targetHasChanged = false;
113 G4bool quasiElastic = false;
114 G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
115 G4int vecLen = 0;
116 vec.Initialize( 0 );
117
118 const G4double cutOff = 0.1;
119 const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
120
121 if ((currentParticle.GetKineticEnergy()/MeV > cutOff) || (G4UniformRand() > anni) )
122 Cascade(vec, vecLen, originalIncident, currentParticle, targetParticle,
123 incidentHasChanged, targetHasChanged, quasiElastic);
124
125 CalculateMomenta(vec, vecLen, originalIncident, originalTarget,
126 modifiedOriginal, targetNucleus, currentParticle,
127 targetParticle, incidentHasChanged, targetHasChanged,
128 quasiElastic);
129
130 SetUpChange(vec, vecLen, currentParticle, targetParticle, incidentHasChanged);
131
132 if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
133
134 delete originalTarget;
135 return &theParticleChange;
136}
137
138void G4LEAntiOmegaMinusInelastic::Cascade(
140 G4int& vecLen,
141 const G4HadProjectile* originalIncident,
142 G4ReactionProduct& currentParticle,
143 G4ReactionProduct& targetParticle,
144 G4bool& incidentHasChanged,
145 G4bool& targetHasChanged,
146 G4bool& quasiElastic)
147{
148 // derived from original FORTRAN code CASOM by H. Fesefeldt (31-Jan-1989)
149 //
150 // AntiOmegaMinus undergoes interaction with nucleon within a nucleus. Check if it is
151 // energetically possible to produce pions/kaons. In not, assume nuclear excitation
152 // occurs and input particle is degraded in energy. No other particles are produced.
153 // If reaction is possible, find the correct number of pions/protons/neutrons
154 // produced using an interpolation to multiplicity data. Replace some pions or
155 // protons/neutrons by kaons or strange baryons according to the average
156 // multiplicity per Inelastic reaction.
157
158 const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
159 const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
160 const G4double targetMass = targetParticle.GetMass()/MeV;
161 G4double centerofmassEnergy = std::sqrt(mOriginal*mOriginal +
162 targetMass*targetMass +
163 2.0*targetMass*etOriginal);
164 G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
165 if (availableEnergy <= G4PionPlus::PionPlus()->GetPDGMass()/MeV) {
166 // not energetically possible to produce pion(s)
167 quasiElastic = true;
168 return;
169 }
170 static G4bool first = true;
171 const G4int numMul = 1200;
172 const G4int numSec = 60;
173 static G4double protmul[numMul], protnorm[numSec]; // proton constants
174 static G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
175
176 // npos = number of pi+, nneg = number of pi-, nzero = number of pi0
177 G4int counter, nt=0;
178 G4int npos = 0, nneg = 0, nzero = 0;
179 G4double test;
180 const G4double c = 1.25;
181 const G4double b[] = { 0.7, 0.7 };
182 if (first) { // Computation of normalization constants will only be done once
183 first = false;
184 G4int i;
185 for (i = 0; i < numMul; ++i) protmul[i] = 0.0;
186 for (i = 0; i < numSec; ++i) protnorm[i] = 0.0;
187 counter = -1;
188 for (npos = 0; npos < (numSec/3); ++npos) {
189 for (nneg = std::max(0,npos-1); nneg <= (npos+1); ++nneg) {
190 for (nzero = 0; nzero < numSec/3; ++nzero) {
191 if (++counter < numMul) {
192 nt = npos+nneg+nzero;
193 if (nt > 0 && nt <= numSec) {
194 protmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[0],c);
195 protnorm[nt-1] += protmul[counter];
196 }
197 }
198 }
199 }
200 }
201
202 for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
203 for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
204 counter = -1;
205 for (npos = 0; npos < numSec/3; ++npos) {
206 for (nneg = npos; nneg <= (npos+2); ++nneg) {
207 for (nzero = 0; nzero < numSec/3; ++nzero) {
208 if (++counter < numMul) {
209 nt = npos+nneg+nzero;
210 if ( nt>0 && nt<=numSec ) {
211 neutmul[counter] = Pmltpc(npos,nneg,nzero,nt,b[1],c);
212 neutnorm[nt-1] += neutmul[counter];
213 }
214 }
215 }
216 }
217 }
218 for (i = 0; i < numSec; ++i) {
219 if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
220 if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
221 }
222 } // end of initialization
223
224 const G4double expxu = 82.; // upper bound for arg. of exp
225 const G4double expxl = -expxu; // lower bound for arg. of exp
231 G4double n, anpn;
232 GetNormalizationConstant( availableEnergy, n, anpn );
233 G4double ran = G4UniformRand();
234 G4double dum, excs = 0.0;
235 G4int nvefix = 0;
236 if (targetParticle.GetDefinition() == aProton) {
237 counter = -1;
238 for (npos = 0; npos < numSec/3 && ran>=excs; ++npos) {
239 for (nneg = std::max(0,npos-1); nneg <= (npos+1) && ran>=excs; ++nneg) {
240 for (nzero = 0; nzero < numSec/3 && ran>=excs; ++nzero) {
241 if ( ++counter < numMul ) {
242 nt = npos+nneg+nzero;
243 if (nt > 0 && nt <= numSec) {
244 test = std::exp(std::min(expxu,
245 std::max(expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
246 dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
247 if (std::fabs(dum) < 1.0) {
248 if( test >= 1.0e-10 )excs += dum*test;
249 }
250 else
251 excs += dum*test;
252 }
253 }
254 }
255 }
256 }
257 if (ran >= excs) {
258 // 3 previous loops continued to the end
259 quasiElastic = true;
260 return;
261 }
262 npos--; nneg--; nzero--;
263
264 // number of secondary mesons determined by kno distribution
265 // check for total charge of final state mesons to determine
266 // the kind of baryons to be produced, taking into account
267 // charge and strangeness conservation
268
269 if (npos < nneg) {
270 if (npos+1 == nneg) {
271 currentParticle.SetDefinitionAndUpdateE(aXiZero);
272 incidentHasChanged = true;
273 nvefix = 1;
274 } else {
275 // charge mismatch
276 currentParticle.SetDefinitionAndUpdateE(aSigmaPlus);
277 incidentHasChanged = true;
278 nvefix = 2;
279 }
280 } else if (npos > nneg) {
281 targetParticle.SetDefinitionAndUpdateE(aNeutron);
282 targetHasChanged = true;
283 }
284 } else {
285 // target must be a neutron
286 counter = -1;
287 for (npos = 0; npos < numSec/3 && ran >= excs; ++npos) {
288 for (nneg = npos; nneg <= (npos+2) && ran>=excs; ++nneg) {
289 for (nzero = 0; nzero < numSec/3 && ran>=excs; ++nzero) {
290 if (++counter < numMul) {
291 nt = npos+nneg+nzero;
292 if (nt > 0 && nt <= numSec) {
293 test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
294 dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
295 if( std::fabs(dum) < 1.0 )
296 {
297 if( test >= 1.0e-10 )excs += dum*test;
298 }
299 else
300 excs += dum*test;
301 }
302 }
303 }
304 }
305 }
306 if (ran >= excs) {
307 // 3 previous loops continued to the end
308 quasiElastic = true;
309 return;
310 }
311 npos--; nneg--; nzero--;
312 if (npos+1 < nneg) {
313 if( npos+2 == nneg) {
314 currentParticle.SetDefinitionAndUpdateE( aXiZero );
315 incidentHasChanged = true;
316 nvefix = 1;
317 } else {
318 // charge mismatch
319 currentParticle.SetDefinitionAndUpdateE( aSigmaPlus );
320 incidentHasChanged = true;
321 nvefix = 2;
322 }
323 targetParticle.SetDefinitionAndUpdateE( aProton );
324 targetHasChanged = true;
325 } else if (npos+1 == nneg) {
326 targetParticle.SetDefinitionAndUpdateE( aProton );
327 targetHasChanged = true;
328 }
329 }
330
331 SetUpPions(npos, nneg, nzero, vec, vecLen);
332 for (G4int i = 0; i < vecLen && nvefix > 0; ++i) {
333 if (vec[i]->GetDefinition() == G4PionMinus::PionMinus() ) {
334
335 // correct the strangeness by replacing a pi- by a kaon-
336 if (nvefix >= 1) vec[i]->SetDefinitionAndUpdateE(aKaonMinus);
337 --nvefix;
338 }
339 }
340 return;
341}
342
343 /* end of file */
344
@ isAlive
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
bool G4bool
Definition: G4Types.hh:67
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector unit() const
double mag() const
Hep3Vector vect() const
G4ParticleDefinition * GetDefinition() const
void Initialize(G4int items)
Definition: G4FastVector.hh:63
void SetStatusChange(G4HadFinalStateStatus aS)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
const G4Material * GetMaterial() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen)
void CalculateMomenta(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
void DoIsotopeCounting(const G4HadProjectile *theProjectile, const G4Nucleus &aNucleus)
void SetUpChange(G4FastVector< G4ReactionProduct, GHADLISTSIZE > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
virtual void ModelDescription(std::ostream &outFile) const
const G4String & GetName() const
Definition: G4Material.hh:177
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
const G4String & GetParticleName() const
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Proton * Proton()
Definition: G4Proton.cc:93
void SetMomentum(const G4double x, const G4double y, const G4double z)
G4double GetTotalMomentum() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
void SetSide(const G4int sid)
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
void SetKineticEnergy(const G4double en)
G4ParticleDefinition * GetDefinition() const
G4double GetMass() const
static G4SigmaPlus * SigmaPlus()
Definition: G4SigmaPlus.cc:108
static G4XiZero * XiZero()
Definition: G4XiZero.cc:106
const G4double pi