Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4LivermoreNuclearGammaConversionModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Authors: G.Depaola & F.Longo
29//
30
33#include "G4SystemOfUnits.hh"
34
35//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
36
37using namespace std;
38
39//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
40
42 const G4String& nam)
43 :G4VEmModel(nam),fParticleChange(0),smallEnergy(2.*MeV),
44 isInitialised(false),
45 crossSectionHandler(0),meanFreePathTable(0)
46{
47 lowEnergyLimit = 2.0*electron_mass_c2;
48 highEnergyLimit = 100 * GeV;
49 SetHighEnergyLimit(highEnergyLimit);
50
51 verboseLevel= 0;
52 // Verbosity scale:
53 // 0 = nothing
54 // 1 = warning for energy non-conservation
55 // 2 = details of energy budget
56 // 3 = calculation of cross sections, file openings, sampling of atoms
57 // 4 = entering in methods
58
59 if(verboseLevel > 0) {
60 G4cout << "Livermore Nuclear Gamma conversion is constructed " << G4endl
61 << "Energy range: "
62 << lowEnergyLimit / MeV << " MeV - "
63 << highEnergyLimit / GeV << " GeV"
64 << G4endl;
65 }
66}
67
68//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
69
71{
72 if (crossSectionHandler) delete crossSectionHandler;
73}
74
75//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
76
77void
79 const G4DataVector&)
80{
81 if (verboseLevel > 3)
82 G4cout << "Calling G4LivermoreNuclearGammaConversionModel::Initialise()" << G4endl;
83
84 if (crossSectionHandler)
85 {
86 crossSectionHandler->Clear();
87 delete crossSectionHandler;
88 }
89
90 // Read data tables for all materials
91
92 crossSectionHandler = new G4CrossSectionHandler();
93 crossSectionHandler->Initialise(0,lowEnergyLimit,100.*GeV,400);
94 G4String crossSectionFile = "pairdata/pp-pair-cs-"; // here only pair in nuclear field cs should be used
95 crossSectionHandler->LoadData(crossSectionFile);
96
97 //
98
99 if (verboseLevel > 0) {
100 G4cout << "Loaded cross section files for Livermore GammaConversion" << G4endl;
101 G4cout << "To obtain the total cross section this should be used only " << G4endl
102 << "in connection with G4ElectronGammaConversion " << G4endl;
103 }
104
105 if (verboseLevel > 0) {
106 G4cout << "Livermore Nuclear Gamma Conversion model is initialized " << G4endl
107 << "Energy range: "
108 << LowEnergyLimit() / MeV << " MeV - "
109 << HighEnergyLimit() / GeV << " GeV"
110 << G4endl;
111 }
112
113 if(isInitialised) return;
115 isInitialised = true;
116}
117
118//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
119
122 G4double GammaEnergy,
125{
126 if (verboseLevel > 3) {
127 G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreNuclearGammaConversionModel"
128 << G4endl;
129 }
130 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0;
131
132 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
133 return cs;
134}
135
136//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
137
138void G4LivermoreNuclearGammaConversionModel::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
139 const G4MaterialCutsCouple* couple,
140 const G4DynamicParticle* aDynamicGamma,
141 G4double,
142 G4double)
143{
144
145// The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
146// cross sections with Coulomb correction. A modified version of the random
147// number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
148
149// Note 1 : Effects due to the breakdown of the Born approximation at low
150// energy are ignored.
151// Note 2 : The differential cross section implicitly takes account of
152// pair creation in both nuclear and atomic electron fields. However triplet
153// prodution is not generated.
154
155 if (verboseLevel > 3)
156 G4cout << "Calling SampleSecondaries() of G4LivermoreNuclearGammaConversionModel" << G4endl;
157
158 G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
159 G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
160
161 G4double epsilon ;
162 G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
163
164 // Do it fast if photon energy < 2. MeV
165 if (photonEnergy < smallEnergy )
166 {
167 epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
168 }
169 else
170 {
171 // Select randomly one element in the current material
172 //const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy);
173 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
174 const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
175
176 if (element == 0)
177 {
178 G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - element = 0"
179 << G4endl;
180 return;
181 }
182 G4IonisParamElm* ionisation = element->GetIonisation();
183 if (ionisation == 0)
184 {
185 G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - ionisation = 0"
186 << G4endl;
187 return;
188 }
189
190 // Extract Coulomb factor for this Element
191 G4double fZ = 8. * (ionisation->GetlogZ3());
192 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
193
194 // Limits of the screening variable
195 G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
196 G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
197 G4double screenMin = std::min(4.*screenFactor,screenMax) ;
198
199 // Limits of the energy sampling
200 G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
201 G4double epsilonMin = std::max(epsilon0Local,epsilon1);
202 G4double epsilonRange = 0.5 - epsilonMin ;
203
204 // Sample the energy rate of the created electron (or positron)
205 G4double screen;
206 G4double gReject ;
207
208 G4double f10 = ScreenFunction1(screenMin) - fZ;
209 G4double f20 = ScreenFunction2(screenMin) - fZ;
210 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
211 G4double normF2 = std::max(1.5 * f20,0.);
212
213 do {
214 if (normF1 / (normF1 + normF2) > G4UniformRand() )
215 {
216 epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.3333) ;
217 screen = screenFactor / (epsilon * (1. - epsilon));
218 gReject = (ScreenFunction1(screen) - fZ) / f10 ;
219 }
220 else
221 {
222 epsilon = epsilonMin + epsilonRange * G4UniformRand();
223 screen = screenFactor / (epsilon * (1 - epsilon));
224 gReject = (ScreenFunction2(screen) - fZ) / f20 ;
225 }
226 } while ( gReject < G4UniformRand() );
227
228 } // End of epsilon sampling
229
230 // Fix charges randomly
231
232 G4double electronTotEnergy;
233 G4double positronTotEnergy;
234
235 if (G4int(2*G4UniformRand()))
236 {
237 electronTotEnergy = (1. - epsilon) * photonEnergy;
238 positronTotEnergy = epsilon * photonEnergy;
239 }
240 else
241 {
242 positronTotEnergy = (1. - epsilon) * photonEnergy;
243 electronTotEnergy = epsilon * photonEnergy;
244 }
245
246 // Scattered electron (positron) angles. ( Z - axis along the parent photon)
247 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
248 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
249
250 G4double u;
251 const G4double a1 = 0.625;
252 G4double a2 = 3. * a1;
253 // G4double d = 27. ;
254
255 // if (9. / (9. + d) > G4UniformRand())
256 if (0.25 > G4UniformRand())
257 {
258 u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
259 }
260 else
261 {
262 u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
263 }
264
265 G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
266 G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
267 G4double phi = twopi * G4UniformRand();
268
269 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
270 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
271
272
273 // Kinematics of the created pair:
274 // the electron and positron are assumed to have a symetric angular
275 // distribution with respect to the Z axis along the parent photon
276
277 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
278
279 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
280
281 G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
282 electronDirection.rotateUz(photonDirection);
283
285 electronDirection,
286 electronKineEnergy);
287
288 // The e+ is always created (even with kinetic energy = 0) for further annihilation
289 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
290
291 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
292
293 G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
294 positronDirection.rotateUz(photonDirection);
295
296 // Create G4DynamicParticle object for the particle2
298 positronDirection, positronKineEnergy);
299 // Fill output vector
300
301 fvect->push_back(particle1);
302 fvect->push_back(particle2);
303
304 // kill incident photon
307
308}
309
310//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
311
312G4double G4LivermoreNuclearGammaConversionModel::ScreenFunction1(G4double screenVariable)
313{
314 // Compute the value of the screening function 3*phi1 - phi2
315
316 G4double value;
317
318 if (screenVariable > 1.)
319 value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
320 else
321 value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
322
323 return value;
324}
325
326//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
327
328G4double G4LivermoreNuclearGammaConversionModel::ScreenFunction2(G4double screenVariable)
329{
330 // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
331
332 G4double value;
333
334 if (screenVariable > 1.)
335 value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
336 else
337 value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
338
339 return value;
340}
341
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4double GetfCoulomb() const
Definition: G4Element.hh:201
G4IonisParamElm * GetIonisation() const
Definition: G4Element.hh:209
G4double GetlogZ3() const
G4double GetZ3() const
G4LivermoreNuclearGammaConversionModel(const G4ParticleDefinition *p=0, const G4String &nam="LivermoreNuclearGammaConversion")
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
void SetProposedKineticEnergy(G4double proposedKinEnergy)
static G4Positron * Positron()
Definition: G4Positron.cc:94
G4double FindValue(G4int Z, G4double e) const
void LoadData(const G4String &dataFile)
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:459
void ProposeTrackStatus(G4TrackStatus status)