42
43{
48 G4double alphaBeta=0.0, alphaReduced=0.0, betaReduced=0.0,
49 root1=0.0, root2=0.0, root3=0.0 ;
51 newton1=0.0, newton2=0.0, newton3=0.0, newton0=0.0,
52 temp=0.0, rootTemp=0.0 ;
53
57
58 for (i=1;i<=nJacobi;i++)
59 {
60 if (i == 1)
61 {
62 alphaReduced =
alpha/nJacobi ;
63 betaReduced = beta/nJacobi ;
64 root1 = (1.0+
alpha)*(2.78002/(4.0+nJacobi*nJacobi)+
65 0.767999*alphaReduced/nJacobi) ;
66 root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced
67 + 0.451998*alphaReduced*alphaReduced
68 + 0.83001*alphaReduced*betaReduced ;
69 root = 1.0-root1/root2 ;
70 }
71 else if (i == 2)
72 {
73 root1=(4.1002+
alpha)/((1.0+alpha)*(1.0+0.155998*
alpha)) ;
74 root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ;
75 root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ;
76 root -= (1.0-root)*root1*root2*root3 ;
77 }
78 else if (i == 3)
79 {
80 root1=(1.67001+0.27998*
alpha)/(1.0+0.37002*alpha) ;
81 root2=1.0+0.22*(nJacobi-8.0)/nJacobi ;
82 root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ;
83 root -= (
fAbscissa[0]-root)*root1*root2*root3 ;
84 }
85 else if (i == nJacobi-1)
86 {
87 root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ;
88 root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ;
89 root3=1.0/(1.0+20.0*
alpha/((7.5+
alpha)*nJacobi*nJacobi)) ;
90 root += (root-
fAbscissa[nJacobi-4])*root1*root2*root3 ;
91 }
92 else if (i == nJacobi)
93 {
94 root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ;
95 root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ;
96 root3 = 1.0/(1.0+8.0*
alpha/((6.28002+
alpha)*nJacobi*nJacobi)) ;
97 root += (root-
fAbscissa[nJacobi-3])*root1*root2*root3 ;
98 }
99 else
100 {
102 }
103 alphaBeta =
alpha + beta ;
104 for (k=1;k<=maxNumber;k++)
105 {
106 temp = 2.0 + alphaBeta ;
107 newton1 = (
alpha-beta+temp*root)/2.0 ;
108 newton2 = 1.0 ;
109 for (
G4int j=2;j<=nJacobi;j++)
110 {
111 newton3 = newton2 ;
112 newton2 = newton1 ;
113 temp = 2*j+alphaBeta ;
114 a = 2*j*(j+alphaBeta)*(temp-2.0) ;
115 b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ;
116 c = 2.0*(j-1+
alpha)*(j-1+beta)*temp ;
117 newton1 = (b*newton2-c*newton3)/a ;
118 }
119 newton0 = (nJacobi*(
alpha - beta - temp*root)*newton1 +
120 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/
121 (temp*(1.0 - root*root)) ;
122 rootTemp = root ;
123 root = rootTemp - newton1/newton0 ;
124 if (std::fabs(root-rootTemp) <= tolerance)
125 {
126 break ;
127 }
128 }
129 if (k > maxNumber)
130 {
131 G4Exception(
"G4GaussJacobiQ::G4GaussJacobiQ()",
"OutOfRange",
133 }
139 *temp*std::pow(2.0,alphaBeta)/(newton0*newton2) ;
140 }
141}
G4double GammaLogarithm(G4double xx)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)