Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4GaussJacobiQ.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// $Id$
28//
29#include "G4GaussJacobiQ.hh"
30
31
32// -------------------------------------------------------------
33//
34// Constructor for Gauss-Jacobi integration method.
35//
36
38 G4double alpha,
39 G4double beta,
40 G4int nJacobi )
41 : G4VGaussianQuadrature(pFunction)
42
43{
44 const G4double tolerance = 1.0e-12 ;
45 const G4double maxNumber = 12 ;
46 G4int i=1, k=1 ;
47 G4double root=0.;
48 G4double alphaBeta=0.0, alphaReduced=0.0, betaReduced=0.0,
49 root1=0.0, root2=0.0, root3=0.0 ;
50 G4double a=0.0, b=0.0, c=0.0,
51 newton1=0.0, newton2=0.0, newton3=0.0, newton0=0.0,
52 temp=0.0, rootTemp=0.0 ;
53
54 fNumber = nJacobi ;
56 fWeight = new G4double[fNumber] ;
57
58 for (i=1;i<=nJacobi;i++)
59 {
60 if (i == 1)
61 {
62 alphaReduced = alpha/nJacobi ;
63 betaReduced = beta/nJacobi ;
64 root1 = (1.0+alpha)*(2.78002/(4.0+nJacobi*nJacobi)+
65 0.767999*alphaReduced/nJacobi) ;
66 root2 = 1.0+1.48*alphaReduced+0.96002*betaReduced
67 + 0.451998*alphaReduced*alphaReduced
68 + 0.83001*alphaReduced*betaReduced ;
69 root = 1.0-root1/root2 ;
70 }
71 else if (i == 2)
72 {
73 root1=(4.1002+alpha)/((1.0+alpha)*(1.0+0.155998*alpha)) ;
74 root2=1.0+0.06*(nJacobi-8.0)*(1.0+0.12*alpha)/nJacobi ;
75 root3=1.0+0.012002*beta*(1.0+0.24997*std::fabs(alpha))/nJacobi ;
76 root -= (1.0-root)*root1*root2*root3 ;
77 }
78 else if (i == 3)
79 {
80 root1=(1.67001+0.27998*alpha)/(1.0+0.37002*alpha) ;
81 root2=1.0+0.22*(nJacobi-8.0)/nJacobi ;
82 root3=1.0+8.0*beta/((6.28001+beta)*nJacobi*nJacobi) ;
83 root -= (fAbscissa[0]-root)*root1*root2*root3 ;
84 }
85 else if (i == nJacobi-1)
86 {
87 root1=(1.0+0.235002*beta)/(0.766001+0.118998*beta) ;
88 root2=1.0/(1.0+0.639002*(nJacobi-4.0)/(1.0+0.71001*(nJacobi-4.0))) ;
89 root3=1.0/(1.0+20.0*alpha/((7.5+alpha)*nJacobi*nJacobi)) ;
90 root += (root-fAbscissa[nJacobi-4])*root1*root2*root3 ;
91 }
92 else if (i == nJacobi)
93 {
94 root1 = (1.0+0.37002*beta)/(1.67001+0.27998*beta) ;
95 root2 = 1.0/(1.0+0.22*(nJacobi-8.0)/nJacobi) ;
96 root3 = 1.0/(1.0+8.0*alpha/((6.28002+alpha)*nJacobi*nJacobi)) ;
97 root += (root-fAbscissa[nJacobi-3])*root1*root2*root3 ;
98 }
99 else
100 {
101 root = 3.0*fAbscissa[i-2]-3.0*fAbscissa[i-3]+fAbscissa[i-4] ;
102 }
103 alphaBeta = alpha + beta ;
104 for (k=1;k<=maxNumber;k++)
105 {
106 temp = 2.0 + alphaBeta ;
107 newton1 = (alpha-beta+temp*root)/2.0 ;
108 newton2 = 1.0 ;
109 for (G4int j=2;j<=nJacobi;j++)
110 {
111 newton3 = newton2 ;
112 newton2 = newton1 ;
113 temp = 2*j+alphaBeta ;
114 a = 2*j*(j+alphaBeta)*(temp-2.0) ;
115 b = (temp-1.0)*(alpha*alpha-beta*beta+temp*(temp-2.0)*root) ;
116 c = 2.0*(j-1+alpha)*(j-1+beta)*temp ;
117 newton1 = (b*newton2-c*newton3)/a ;
118 }
119 newton0 = (nJacobi*(alpha - beta - temp*root)*newton1 +
120 2.0*(nJacobi + alpha)*(nJacobi + beta)*newton2)/
121 (temp*(1.0 - root*root)) ;
122 rootTemp = root ;
123 root = rootTemp - newton1/newton0 ;
124 if (std::fabs(root-rootTemp) <= tolerance)
125 {
126 break ;
127 }
128 }
129 if (k > maxNumber)
130 {
131 G4Exception("G4GaussJacobiQ::G4GaussJacobiQ()", "OutOfRange",
132 FatalException, "Too many iterations in constructor.") ;
133 }
134 fAbscissa[i-1] = root ;
135 fWeight[i-1] = std::exp(GammaLogarithm((G4double)(alpha+nJacobi)) +
136 GammaLogarithm((G4double)(beta+nJacobi)) -
137 GammaLogarithm((G4double)(nJacobi+1.0)) -
138 GammaLogarithm((G4double)(nJacobi + alphaBeta + 1.0)))
139 *temp*std::pow(2.0,alphaBeta)/(newton0*newton2) ;
140 }
141}
142
143
144// ----------------------------------------------------------
145//
146// Gauss-Jacobi method for integration of
147// ((1-x)^alpha)*((1+x)^beta)*pFunction(x)
148// from minus unit to plus unit .
149
150
153{
154 G4double integral = 0.0 ;
155 for(G4int i=0;i<fNumber;i++)
156 {
157 integral += fWeight[i]*fFunction(fAbscissa[i]) ;
158 }
159 return integral ;
160}
161
G4double(* function)(G4double)
@ FatalException
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
G4double Integral() const
G4GaussJacobiQ(function pFunction, G4double alpha, G4double beta, G4int nJacobi)
G4double GammaLogarithm(G4double xx)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41