Geant4 9.6.0
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros
G4LivermoreGammaConversionModelRC.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// $Id$
27//
28// Author: Francesco Longo & Gerardo Depaola
29// on base of G4LivermoreGammaConversionModel
30//
31// History:
32// --------
33// 12 Apr 2009 V Ivanchenko Cleanup initialisation and generation of secondaries:
34// - apply internal high-energy limit only in constructor
35// - do not apply low-energy limit (default is 0)
36// - use CLHEP electron mass for low-enegry limit
37// - remove MeanFreePath method and table
38
39
42#include "G4SystemOfUnits.hh"
43
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
45
46using namespace std;
47
48//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
49
51 const G4String& nam)
52 :G4VEmModel(nam),fParticleChange(0),smallEnergy(2.*MeV),isInitialised(false),
53 crossSectionHandler(0),meanFreePathTable(0)
54{
55 lowEnergyLimit = 2.0*electron_mass_c2;
56 highEnergyLimit = 100 * GeV;
57 SetHighEnergyLimit(highEnergyLimit);
58
59 verboseLevel= 0;
60 // Verbosity scale:
61 // 0 = nothing
62 // 1 = warning for energy non-conservation
63 // 2 = details of energy budget
64 // 3 = calculation of cross sections, file openings, sampling of atoms
65 // 4 = entering in methods
66
67 if(verboseLevel > 0) {
68 G4cout << "Livermore Gamma conversion is constructed " << G4endl
69 << "Energy range: "
70 << lowEnergyLimit / MeV << " MeV - "
71 << highEnergyLimit / GeV << " GeV"
72 << G4endl;
73 }
74}
75
76//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
77
79{
80 if (crossSectionHandler) delete crossSectionHandler;
81}
82
83//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
84
85void
87 const G4DataVector&)
88{
89 if (verboseLevel > 3)
90 G4cout << "Calling G4LivermoreGammaConversionModelRC::Initialise()" << G4endl;
91
92 if (crossSectionHandler)
93 {
94 crossSectionHandler->Clear();
95 delete crossSectionHandler;
96 }
97
98 // Read data tables for all materials
99
100 crossSectionHandler = new G4CrossSectionHandler();
101 crossSectionHandler->Initialise(0,lowEnergyLimit,100.*GeV,400);
102 G4String crossSectionFile = "pair/pp-cs-";
103 crossSectionHandler->LoadData(crossSectionFile);
104
105 //
106
107 if (verboseLevel > 2)
108 G4cout << "Loaded cross section files for Livermore Gamma Conversion model RC" << G4endl;
109
110 if (verboseLevel > 0) {
111 G4cout << "Livermore Gamma Conversion model is initialized " << G4endl
112 << "Energy range: "
113 << LowEnergyLimit() / MeV << " MeV - "
114 << HighEnergyLimit() / GeV << " GeV"
115 << G4endl;
116 }
117
118 if(isInitialised) return;
120 isInitialised = true;
121}
122
123//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
124
127 G4double GammaEnergy,
130{
131 if (verboseLevel > 3) {
132 G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreGammaConversionModelRC"
133 << G4endl;
134 }
135 if (GammaEnergy < lowEnergyLimit || GammaEnergy > highEnergyLimit) return 0;
136
137 G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
138 return cs;
139}
140
141//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
142
143void G4LivermoreGammaConversionModelRC::SampleSecondaries(std::vector<G4DynamicParticle*>* fvect,
144 const G4MaterialCutsCouple* couple,
145 const G4DynamicParticle* aDynamicGamma,
146 G4double,
147 G4double)
148{
149
150// The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
151// cross sections with Coulomb correction. A modified version of the random
152// number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
153
154// Note 1 : Effects due to the breakdown of the Born approximation at low
155// energy are ignored.
156// Note 2 : The differential cross section implicitly takes account of
157// pair creation in both nuclear and atomic electron fields. However triplet
158// prodution is not generated.
159
160 if (verboseLevel > 3)
161 G4cout << "Calling SampleSecondaries() of G4LivermoreGammaConversionModelRC" << G4endl;
162
163 G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
164 G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
165
166 G4double epsilon ;
167 G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
168 G4double electronTotEnergy;
169 G4double positronTotEnergy;
170
171
172 // Do it fast if photon energy < 2. MeV
173 if (photonEnergy < smallEnergy )
174 {
175 epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
176
177 if (G4int(2*G4UniformRand()))
178 {
179 electronTotEnergy = (1. - epsilon) * photonEnergy;
180 positronTotEnergy = epsilon * photonEnergy;
181 }
182 else
183 {
184 positronTotEnergy = (1. - epsilon) * photonEnergy;
185 electronTotEnergy = epsilon * photonEnergy;
186 }
187 }
188 else
189 {
190 // Select randomly one element in the current material
191 //const G4Element* element = crossSectionHandler->SelectRandomElement(couple,photonEnergy);
192 const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
193 const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
194 G4cout << "G4LivermoreGammaConversionModelRC::SampleSecondaries" << G4endl;
195
196 if (element == 0)
197 {
198 G4cout << "G4LivermoreGammaConversionModelRC::SampleSecondaries - element = 0"
199 << G4endl;
200 return;
201 }
202 G4IonisParamElm* ionisation = element->GetIonisation();
203 if (ionisation == 0)
204 {
205 G4cout << "G4LivermoreGammaConversionModelRC::SampleSecondaries - ionisation = 0"
206 << G4endl;
207 return;
208 }
209
210 // Extract Coulomb factor for this Element
211 G4double fZ = 8. * (ionisation->GetlogZ3());
212 if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
213
214 // Limits of the screening variable
215 G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
216 G4double screenMax = std::exp ((42.24 - fZ)/8.368) - 0.952 ;
217 G4double screenMin = std::min(4.*screenFactor,screenMax) ;
218
219 // Limits of the energy sampling
220 G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
221 G4double epsilonMin = std::max(epsilon0Local,epsilon1);
222 G4double epsilonRange = 0.5 - epsilonMin ;
223
224 // Sample the energy rate of the created electron (or positron)
225 G4double screen;
226 G4double gReject ;
227
228 G4double f10 = ScreenFunction1(screenMin) - fZ;
229 G4double f20 = ScreenFunction2(screenMin) - fZ;
230 G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
231 G4double normF2 = std::max(1.5 * f20,0.);
232 G4double a=393.3750918, b=115.3070201, c=810.6428451, d=19.96497475, e=1016.874592, f=1.936685510,
233 gLocal=751.2140962, h=0.099751048, i=299.9466339, j=0.002057250, k=49.81034926;
234 G4double aa=-18.6371131, bb=-1729.95248, cc=9450.971186, dd=106336.0145, ee=55143.09287, ff=-117602.840,
235 gg=-721455.467, hh=693957.8635, ii=156266.1085, jj=533209.9347;
236 G4double Rechazo = 0.;
237 G4double logepsMin = log(epsilonMin);
238 G4double NormaRC = a + b*logepsMin + c/logepsMin + d*pow(logepsMin,2.) + e/pow(logepsMin,2.) + f*pow(logepsMin,3.) +
239 gLocal/pow(logepsMin,3.) + h*pow(logepsMin,4.) + i/pow(logepsMin,4.) + j*pow(logepsMin,5.) +
240 k/pow(logepsMin,5.);
241
242 do {
243 do {
244 if (normF1 / (normF1 + normF2) > G4UniformRand() )
245 {
246 epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.3333) ;
247 screen = screenFactor / (epsilon * (1. - epsilon));
248 gReject = (ScreenFunction1(screen) - fZ) / f10 ;
249 }
250 else
251 {
252 epsilon = epsilonMin + epsilonRange * G4UniformRand();
253 screen = screenFactor / (epsilon * (1 - epsilon));
254 gReject = (ScreenFunction2(screen) - fZ) / f20 ;
255 }
256 } while ( gReject < G4UniformRand() );
257
258 if (G4int(2*G4UniformRand())) epsilon = (1. - epsilon); // Extención de Epsilon hasta 1.
259
260 G4double logepsilon = log(epsilon);
261 G4double deltaP_R1 = 1. + (a + b*logepsilon + c/logepsilon + d*pow(logepsilon,2.) + e/pow(logepsilon,2.) +
262 f*pow(logepsilon,3.) + gLocal/pow(logepsilon,3.) + h*pow(logepsilon,4.) + i/pow(logepsilon,4.) +
263 j*pow(logepsilon,5.) + k/pow(logepsilon,5.))/100.;
264 G4double deltaP_R2 = 1.+((aa + cc*logepsilon + ee*pow(logepsilon,2.) + gg*pow(logepsilon,3.) + ii*pow(logepsilon,4.))
265 / (1. + bb*logepsilon + dd*pow(logepsilon,2.) + ff*pow(logepsilon,3.) + hh*pow(logepsilon,4.)
266 + jj*pow(logepsilon,5.) ))/100.;
267
268 if (epsilon <= 0.5)
269 {
270 Rechazo = deltaP_R1/NormaRC;
271 }
272 else
273 {
274 Rechazo = deltaP_R2/NormaRC;
275 }
276 G4cout << Rechazo << " " << NormaRC << " " << epsilon << G4endl;
277 } while (Rechazo < G4UniformRand() );
278
279 electronTotEnergy = (1. - epsilon) * photonEnergy;
280 positronTotEnergy = epsilon * photonEnergy;
281
282 } // End of epsilon sampling
283
284 // Fix charges randomly
285
286 // Scattered electron (positron) angles. ( Z - axis along the parent photon)
287 // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
288 // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
289
290 G4double u;
291 const G4double a1 = 0.625;
292 G4double a2 = 3. * a1;
293 // G4double d = 27. ;
294
295 // if (9. / (9. + d) > G4UniformRand())
296 if (0.25 > G4UniformRand())
297 {
298 u = - std::log(G4UniformRand() * G4UniformRand()) / a1 ;
299 }
300 else
301 {
302 u = - std::log(G4UniformRand() * G4UniformRand()) / a2 ;
303 }
304
305 G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
306 G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
307 G4double phi = twopi * G4UniformRand();
308
309 G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
310 G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
311
312
313 // Kinematics of the created pair:
314 // the electron and positron are assumed to have a symetric angular
315 // distribution with respect to the Z axis along the parent photon
316
317 G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
318
319 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
320
321 G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
322 electronDirection.rotateUz(photonDirection);
323
325 electronDirection,
326 electronKineEnergy);
327
328 // The e+ is always created (even with kinetic energy = 0) for further annihilation
329 G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
330
331 // SI - The range test has been removed wrt original G4LowEnergyGammaconversion class
332
333 G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
334 positronDirection.rotateUz(photonDirection);
335
336 // Create G4DynamicParticle object for the particle2
338 positronDirection, positronKineEnergy);
339 // Fill output vector
340// G4cout << "Cree el e+ " << epsilon << G4endl;
341 fvect->push_back(particle1);
342 fvect->push_back(particle2);
343
344 // kill incident photon
347
348}
349
350//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
351
352G4double G4LivermoreGammaConversionModelRC::ScreenFunction1(G4double screenVariable)
353{
354 // Compute the value of the screening function 3*phi1 - phi2
355
356 G4double value;
357
358 if (screenVariable > 1.)
359 value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
360 else
361 value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
362
363 return value;
364}
365
366//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
367
368G4double G4LivermoreGammaConversionModelRC::ScreenFunction2(G4double screenVariable)
369{
370 // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
371
372 G4double value;
373
374 if (screenVariable > 1.)
375 value = 42.24 - 8.368 * std::log(screenVariable + 0.952);
376 else
377 value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
378
379 return value;
380}
381
@ fStopAndKill
double G4double
Definition: G4Types.hh:64
int G4int
Definition: G4Types.hh:66
#define G4endl
Definition: G4ios.hh:52
G4DLLIMPORT std::ostream G4cout
#define G4UniformRand()
Definition: Randomize.hh:53
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Electron * Electron()
Definition: G4Electron.cc:94
G4double GetfCoulomb() const
Definition: G4Element.hh:201
G4IonisParamElm * GetIonisation() const
Definition: G4Element.hh:209
G4double GetlogZ3() const
G4double GetZ3() const
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
G4LivermoreGammaConversionModelRC(const G4ParticleDefinition *p=0, const G4String &nam="LivermoreConversion")
void SetProposedKineticEnergy(G4double proposedKinEnergy)
static G4Positron * Positron()
Definition: G4Positron.cc:94
G4double FindValue(G4int Z, G4double e) const
void LoadData(const G4String &dataFile)
void Initialise(G4VDataSetAlgorithm *interpolation=0, G4double minE=250 *CLHEP::eV, G4double maxE=100 *CLHEP::GeV, G4int numberOfBins=200, G4double unitE=CLHEP::MeV, G4double unitData=CLHEP::barn, G4int minZ=1, G4int maxZ=99)
void SetHighEnergyLimit(G4double)
Definition: G4VEmModel.hh:585
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:109
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:529
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:522
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:459
void ProposeTrackStatus(G4TrackStatus status)