Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4LindhardSorensenIonModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// -------------------------------------------------------------------
27//
28// GEANT4 Class header file
29//
30//
31// File name: G4LindhardSorensenIonModel
32//
33// Author: Alexander Bagulya & Vladimir Ivanchenko
34//
35// Creation date: 16.04.2018
36//
37//
38// -------------------------------------------------------------------
39//
40
41//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
42//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
43
45#include "Randomize.hh"
47#include "G4SystemOfUnits.hh"
48#include "G4Electron.hh"
49#include "G4LossTableManager.hh"
50#include "G4EmCorrections.hh"
52#include "G4Log.hh"
53#include "G4DeltaAngle.hh"
55#include "G4BraggIonModel.hh"
56#include "G4BetheBlochModel.hh"
57#include "G4IonICRU73Data.hh"
58
59//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
60
61using namespace std;
62
63G4LindhardSorensenData* G4LindhardSorensenIonModel::lsdata = nullptr;
64G4IonICRU73Data* G4LindhardSorensenIonModel::fIonData = nullptr;
65std::vector<G4float>* G4LindhardSorensenIonModel::fact[] = {nullptr};
66
68 const G4String& nam)
69 : G4VEmModel(nam),
70 particle(nullptr),
71 twoln10(2.0*G4Log(10.0))
72{
73 fParticleChange = nullptr;
74 theElectron = G4Electron::Electron();
77 fBraggModel = new G4BraggIonModel();
78 fBBModel = new G4BetheBlochModel();
79 fElimit = 2.0*CLHEP::MeV;
80}
81
82//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
83
85
86//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
87
89 const G4DataVector& ptr)
90{
91 fBraggModel->Initialise(p, ptr);
92 fBBModel->Initialise(p, ptr);
93 SetParticle(p);
94 //G4cout << "G4LindhardSorensenIonModel::Initialise for "
95 // << p->GetParticleName() << G4endl;
96
97 // always false before the run
99
100 if(nullptr == fParticleChange) {
101 fParticleChange = GetParticleChangeForLoss();
102 if(UseAngularGeneratorFlag() && nullptr == GetAngularDistribution()) {
104 }
105 }
106 if(IsMaster()) {
107 if(nullptr == lsdata) {
108 lsdata = new G4LindhardSorensenData();
109 }
110 if(nullptr == fIonData) {
111 fIonData = new G4IonICRU73Data();
112 }
113 fIonData->Initialise();
114 }
115}
116
117//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
118
121 const G4Material* mat,
122 G4double kinEnergy)
123{
124 return corr->EffectiveChargeSquareRatio(p,mat,kinEnergy);
125}
126
127//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
128
131 const G4Material* mat,
132 G4double kinEnergy)
133{
134 return corr->GetParticleCharge(p,mat,kinEnergy);
135}
136
137//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
138
139void G4LindhardSorensenIonModel::SetupParameters()
140{
141 mass = particle->GetPDGMass();
142 spin = particle->GetPDGSpin();
143 charge = particle->GetPDGCharge()*inveplus;
144 Zin = G4lrint(std::abs(charge));
145 chargeSquare = charge*charge;
146 eRatio = CLHEP::electron_mass_c2/mass;
147 pRatio = CLHEP::proton_mass_c2/mass;
148 const G4double aMag =
149 1./(0.5*CLHEP::eplus*CLHEP::hbar_Planck*CLHEP::c_squared);
150 G4double magmom = particle->GetPDGMagneticMoment()*mass*aMag;
151 magMoment2 = magmom*magmom - 1.0;
152 G4double x = 0.8426*CLHEP::GeV;
153 if(spin == 0.0 && mass < GeV) { x = 0.736*CLHEP::GeV; }
154 else if (Zin > 1) { x /= nist->GetA27(Zin); }
155
156 formfact = 2.0*CLHEP::electron_mass_c2/(x*x);
157 tlimit = 2.0/formfact;
158}
159
160//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
161
163 const G4MaterialCutsCouple* couple)
164{
166}
167
168//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
169
172 const G4ParticleDefinition* p,
173 G4double kinEnergy,
174 G4double cutEnergy,
175 G4double maxKinEnergy)
176{
177 // take into account formfactor
178 G4double tmax = MaxSecondaryEnergy(p, kinEnergy);
179 G4double emax = std::min(tmax, maxKinEnergy);
180 G4double escaled = kinEnergy*pRatio;
181 G4double cross = (escaled <= fElimit)
182 ? fBraggModel->ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,emax)
183 : fBBModel->ComputeCrossSectionPerElectron(p,kinEnergy,cutEnergy,emax);
184 // G4cout << "LS: e= " << kinEnergy << " tmin= " << cutEnergy
185 // << " tmax= " << maxEnergy << " cross= " << cross << G4endl;
186 return cross;
187}
188
189//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
190
192 const G4ParticleDefinition* p,
193 G4double kineticEnergy,
195 G4double cutEnergy,
196 G4double maxEnergy)
197{
198 return Z*ComputeCrossSectionPerElectron(p,kineticEnergy,cutEnergy,maxEnergy);
199}
200
201//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
202
204 const G4Material* material,
205 const G4ParticleDefinition* p,
206 G4double kineticEnergy,
207 G4double cutEnergy,
208 G4double maxEnergy)
209{
210 return material->GetElectronDensity()
211 *ComputeCrossSectionPerElectron(p,kineticEnergy,cutEnergy,maxEnergy);
212}
213
214//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
215
218 const G4ParticleDefinition* p,
219 G4double kinEnergy,
220 G4double cut)
221{
222 // formfactor is taken into account in CorrectionsAlongStep(..)
223 G4double tmax = MaxSecondaryEnergy(p, kinEnergy);
224 G4double cutEnergy = std::min(std::min(cut,tmax), tlimit);
225
226 G4double escaled = kinEnergy*pRatio;
227 G4double dedx = (escaled <= fElimit)
228 ? fBraggModel->ComputeDEDXPerVolume(mat, p, kinEnergy, cutEnergy)
229 : fBBModel->ComputeDEDXPerVolume(mat, p, kinEnergy, cutEnergy);
230
231 //G4cout << "E(MeV)=" << kinEnergy/MeV << " dedx=" << dedx
232 // << " " << material->GetName() << " Ecut(MeV)=" << cutEnergy << G4endl;
233 return dedx;
234}
235
236//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
237
239 const G4MaterialCutsCouple* couple,
240 const G4DynamicParticle* dp,
241 const G4double& length,
242 G4double& eloss)
243{
244 // no correction at the last step
245 const G4double preKinEnergy = dp->GetKineticEnergy();
246 if(eloss >= preKinEnergy) { return; }
247
248 const G4ParticleDefinition* p = dp->GetDefinition();
249 SetParticle(p);
250 const G4Material* mat = couple->GetMaterial();
251 const G4double eDensity = mat->GetElectronDensity();
252 const G4double e = std::max(preKinEnergy - eloss*0.5, preKinEnergy*0.5);
253 const G4double tmax = MaxSecondaryEnergy(p, e);
254 const G4double escaled = e*pRatio;
255 const G4double tau = e/mass;
256
257 const G4double q20 = corr->EffectiveChargeSquareRatio(p, mat, preKinEnergy);
258 const G4double q2 = corr->EffectiveChargeSquareRatio(p, mat, e);
259 const G4int Z = p->GetAtomicNumber();
260
261 G4double res;
262 if(escaled <= fElimit) {
263 // data from ICRU73 or ICRU90
264 res = fIonData->GetDEDX(mat, Z, escaled, G4Log(escaled));
265 /*
266 G4cout << "GetDEDX for Z=" << Z << " in " << mat->GetName()
267 << " Escaled=" << escaled << " E="
268 << e << " dEdx=" << res << G4endl;
269 */
270 if(res > 0.0) {
271 auto pcuts = couple->GetProductionCuts();
272 G4double cut = (nullptr == pcuts) ? tmax : pcuts->GetProductionCut(1);
273 if(cut < tmax) {
274 const G4double x = cut/tmax;
275 res += (G4Log(x)*(tau + 1.)*(tau + 1.)/(tau * (tau + 2.0)) + 1.0 - x)
276 *q2*CLHEP::twopi_mc2_rcl2*eDensity;
277 }
278 res *= length;
279 } else {
280 // simplified correction
281 res = eloss*q2/q20;
282 }
283 } else {
284 // Lindhard-Sorensen model
285 const G4double gam = tau + 1.0;
286 const G4double beta2 = tau * (tau+2.0)/(gam*gam);
287 G4double deltaL0 = 2.0*corr->BarkasCorrection(p, mat, e)*(charge-1.)/charge;
288 G4double deltaL = lsdata->GetDeltaL(Zin, gam);
289
290 res = eloss +
291 CLHEP::twopi_mc2_rcl2*q2*eDensity*(deltaL+deltaL0)*length/beta2;
292 /*
293 G4cout << "G4LindhardSorensenIonModel::CorrectionsAlongStep: E(GeV)= "
294 << preKinEnergy/GeV << " eloss(MeV)= " << eloss
295 << " L= " << eloss*beta2/(twopi_mc2_rcl2*chargeSquare*eDensity*length)
296 << " dL0= " << deltaL0
297 << " dL= " << deltaL << G4endl;
298 */
299 }
300 if(res > preKinEnergy) { res = preKinEnergy; }
301 else if(res < 0.0) { res = eloss; }
302 /*
303 G4cout << "G4LindhardSorensenIonModel::CorrectionsAlongStep: E(GeV)="
304 << preKinEnergy/GeV << " eloss(MeV)=" << eloss
305 << " res(MeV)=" << res << G4endl;
306 */
307 eloss = res;
308}
309
310//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
311
313 vector<G4DynamicParticle*>* vdp,
314 const G4MaterialCutsCouple* couple,
315 const G4DynamicParticle* dp,
316 G4double minKinEnergy,
317 G4double maxEnergy)
318{
319 G4double kineticEnergy = dp->GetKineticEnergy();
320 // take into account formfactor
321 G4double tmax = MaxSecondaryEnergy(dp->GetDefinition(),kineticEnergy);
322
323 G4double maxKinEnergy = std::min(maxEnergy,tmax);
324 if(minKinEnergy >= maxKinEnergy) { return; }
325
326 //G4cout << "G4LindhardSorensenIonModel::SampleSecondaries Emin= "
327 // << minKinEnergy << " Emax= " << maxKinEnergy << G4endl;
328
329 G4double totEnergy = kineticEnergy + mass;
330 G4double etot2 = totEnergy*totEnergy;
331 G4double beta2 = kineticEnergy*(kineticEnergy + 2.0*mass)/etot2;
332
333 G4double deltaKinEnergy, f;
334 G4double f1 = 0.0;
335 G4double fmax = 1.0;
336 if( 0.0 < spin ) { fmax += 0.5*maxKinEnergy*maxKinEnergy/etot2; }
337
338 CLHEP::HepRandomEngine* rndmEngineMod = G4Random::getTheEngine();
339 G4double rndm[2];
340
341 // sampling without nuclear size effect
342 do {
343 rndmEngineMod->flatArray(2, rndm);
344 deltaKinEnergy = minKinEnergy*maxKinEnergy
345 /(minKinEnergy*(1.0 - rndm[0]) + maxKinEnergy*rndm[0]);
346
347 f = 1.0 - beta2*deltaKinEnergy/tmax;
348 if( 0.0 < spin ) {
349 f1 = 0.5*deltaKinEnergy*deltaKinEnergy/etot2;
350 f += f1;
351 }
352
353 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
354 } while( fmax*rndm[1] > f);
355
356 // projectile formfactor - suppresion of high energy
357 // delta-electron production at high energy
358
359 G4double x = formfact*deltaKinEnergy;
360 if(x > 1.e-6) {
361
362 G4double x1 = 1.0 + x;
363 G4double grej = 1.0/(x1*x1);
364 if( 0.0 < spin ) {
365 G4double x2 = 0.5*electron_mass_c2*deltaKinEnergy/(mass*mass);
366 grej *= (1.0 + magMoment2*(x2 - f1/f)/(1.0 + x2));
367 }
368 if(grej > 1.1) {
369 G4cout << "### G4LindhardSorensenIonModel WARNING: grej= " << grej
370 << " " << dp->GetDefinition()->GetParticleName()
371 << " Ekin(MeV)= " << kineticEnergy
372 << " delEkin(MeV)= " << deltaKinEnergy
373 << G4endl;
374 }
375 if(rndmEngineMod->flat() > grej) { return; }
376 }
377
378 G4ThreeVector deltaDirection;
379
381
382 const G4Material* mat = couple->GetMaterial();
384
385 deltaDirection =
386 GetAngularDistribution()->SampleDirection(dp, deltaKinEnergy, Z, mat);
387
388 } else {
389
390 G4double deltaMomentum =
391 std::sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
392 G4double cost = deltaKinEnergy * (totEnergy + electron_mass_c2) /
393 (deltaMomentum * dp->GetTotalMomentum());
394 cost = std::min(cost, 1.0);
395 G4double sint = std::sqrt((1.0 - cost)*(1.0 + cost));
396
397 G4double phi = CLHEP::twopi*rndmEngineMod->flat();
398
399 deltaDirection.set(sint*std::cos(phi),sint*std::sin(phi), cost) ;
400 deltaDirection.rotateUz(dp->GetMomentumDirection());
401 }
402 /*
403 G4cout << "### G4LindhardSorensenIonModel "
404 << dp->GetDefinition()->GetParticleName()
405 << " Ekin(MeV)= " << kineticEnergy
406 << " delEkin(MeV)= " << deltaKinEnergy
407 << " tmin(MeV)= " << minKinEnergy
408 << " tmax(MeV)= " << maxKinEnergy
409 << " dir= " << dp->GetMomentumDirection()
410 << " dirDelta= " << deltaDirection
411 << G4endl;
412 */
413 // create G4DynamicParticle object for delta ray
414 auto delta = new G4DynamicParticle(theElectron,deltaDirection,deltaKinEnergy);
415
416 vdp->push_back(delta);
417
418 // Change kinematics of primary particle
419 kineticEnergy -= deltaKinEnergy;
420 G4ThreeVector finalP = dp->GetMomentum() - delta->GetMomentum();
421 finalP = finalP.unit();
422
423 fParticleChange->SetProposedKineticEnergy(kineticEnergy);
424 fParticleChange->SetProposedMomentumDirection(finalP);
425}
426
427//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
428
431 G4double kinEnergy)
432{
433 // here particle type is checked for any method
434 SetParticle(pd);
435 G4double tau = kinEnergy/mass;
436 return 2.0*CLHEP::electron_mass_c2*tau*(tau + 2.) /
437 (1. + 2.0*(tau + 1.)*eRatio + eRatio*eRatio);
438}
439
440//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4double G4Log(G4double x)
Definition: G4Log.hh:227
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4endl
Definition: G4ios.hh:57
G4GLOB_DLL std::ostream G4cout
Hep3Vector unit() const
void set(double x, double y, double z)
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:33
virtual double flat()=0
virtual void flatArray(const int size, double *vect)=0
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
const G4ThreeVector & GetMomentumDirection() const
G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
G4double GetTotalMomentum() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
G4double EffectiveChargeSquareRatio(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
G4double BarkasCorrection(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
G4double GetParticleCharge(const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
G4double GetDEDX(const G4Material *, const G4int Z, const G4double e, const G4double loge) const
G4double GetMeanExcitationEnergy() const
G4double GetDeltaL(G4int Z, G4double gamma) const
~G4LindhardSorensenIonModel() override
G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy) override
G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy) override
G4double MinEnergyCut(const G4ParticleDefinition *, const G4MaterialCutsCouple *couple) override
G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
G4LindhardSorensenIonModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="LindhardSorensen")
void CorrectionsAlongStep(const G4MaterialCutsCouple *couple, const G4DynamicParticle *dp, const G4double &length, G4double &eloss) override
G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) override
G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
G4double GetParticleCharge(const G4ParticleDefinition *p, const G4Material *mat, G4double kineticEnergy) override
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
static G4LossTableManager * Instance()
G4EmCorrections * EmCorrections()
const G4Material * GetMaterial() const
G4ProductionCuts * GetProductionCuts() const
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:221
G4double GetElectronDensity() const
Definition: G4Material.hh:212
G4double GetA27(G4int Z) const
static G4NistManager * Instance()
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
G4double GetPDGMagneticMoment() const
G4int GetAtomicNumber() const
G4double GetPDGCharge() const
const G4String & GetParticleName() const
G4double GetProductionCut(G4int index) const
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
G4VEmAngularDistribution * GetAngularDistribution()
Definition: G4VEmModel.hh:600
G4double inveplus
Definition: G4VEmModel.hh:427
G4int SelectRandomAtomNumber(const G4Material *) const
Definition: G4VEmModel.cc:253
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:802
void SetAngularDistribution(G4VEmAngularDistribution *)
Definition: G4VEmModel.hh:607
G4bool UseAngularGeneratorFlag() const
Definition: G4VEmModel.hh:697
G4ParticleChangeForLoss * GetParticleChangeForLoss()
Definition: G4VEmModel.cc:109
int G4lrint(double ad)
Definition: templates.hh:134