Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
Loading...
Searching...
No Matches
G4PolyconeSide.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26// Implementation of G4PolyconeSide, the face representing
27// one conical side of a polycone
28//
29// Author: David C. Williams ([email protected])
30// --------------------------------------------------------------------
31
32#include "G4PolyconeSide.hh"
33#include "meshdefs.hh"
35#include "G4IntersectingCone.hh"
36#include "G4ClippablePolygon.hh"
37#include "G4AffineTransform.hh"
38#include "G4SolidExtentList.hh"
40
41#include "Randomize.hh"
42
43// This new field helps to use the class G4PlSideManager.
44//
45G4PlSideManager G4PolyconeSide::subInstanceManager;
46
47// This macro changes the references to fields that are now encapsulated
48// in the class G4PlSideData.
49//
50#define G4MT_pcphix ((subInstanceManager.offset[instanceID]).fPhix)
51#define G4MT_pcphiy ((subInstanceManager.offset[instanceID]).fPhiy)
52#define G4MT_pcphiz ((subInstanceManager.offset[instanceID]).fPhiz)
53#define G4MT_pcphik ((subInstanceManager.offset[instanceID]).fPhik)
54
55// Returns the private data instance manager.
56//
58{
59 return subInstanceManager;
60}
61
62// Constructor
63//
64// Values for r1,z1 and r2,z2 should be specified in clockwise
65// order in (r,z).
66//
68 const G4PolyconeSideRZ* tail,
69 const G4PolyconeSideRZ* head,
70 const G4PolyconeSideRZ* nextRZ,
71 G4double thePhiStart,
72 G4double theDeltaPhi,
73 G4bool thePhiIsOpen,
74 G4bool isAllBehind )
75{
76 instanceID = subInstanceManager.CreateSubInstance();
77
79 G4MT_pcphix = 0.0; G4MT_pcphiy = 0.0; G4MT_pcphiz = 0.0; G4MT_pcphik = 0.0;
80
81 //
82 // Record values
83 //
84 r[0] = tail->r; z[0] = tail->z;
85 r[1] = head->r; z[1] = head->z;
86
87 phiIsOpen = thePhiIsOpen;
88 if (phiIsOpen)
89 {
90 deltaPhi = theDeltaPhi;
91 startPhi = thePhiStart;
92
93 //
94 // Set phi values to our conventions
95 //
96 while (deltaPhi < 0.0) // Loop checking, 13.08.2015, G.Cosmo
97 deltaPhi += twopi;
98 while (startPhi < 0.0) // Loop checking, 13.08.2015, G.Cosmo
99 startPhi += twopi;
100
101 //
102 // Calculate corner coordinates
103 //
104 ncorners = 4;
106
107 corners[0] = G4ThreeVector( tail->r*std::cos(startPhi),
108 tail->r*std::sin(startPhi), tail->z );
109 corners[1] = G4ThreeVector( head->r*std::cos(startPhi),
110 head->r*std::sin(startPhi), head->z );
111 corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi),
112 tail->r*std::sin(startPhi+deltaPhi), tail->z );
113 corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi),
114 head->r*std::sin(startPhi+deltaPhi), head->z );
115 }
116 else
117 {
118 deltaPhi = twopi;
119 startPhi = 0.0;
120 }
121
122 allBehind = isAllBehind;
123
124 //
125 // Make our intersecting cone
126 //
127 cone = new G4IntersectingCone( r, z );
128
129 //
130 // Calculate vectors in r,z space
131 //
132 rS = r[1]-r[0]; zS = z[1]-z[0];
133 length = std::sqrt( rS*rS + zS*zS);
134 rS /= length; zS /= length;
135
136 rNorm = +zS;
137 zNorm = -rS;
138
139 G4double lAdj;
140
141 prevRS = r[0]-prevRZ->r;
142 prevZS = z[0]-prevRZ->z;
143 lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS );
144 prevRS /= lAdj;
145 prevZS /= lAdj;
146
147 rNormEdge[0] = rNorm + prevZS;
148 zNormEdge[0] = zNorm - prevRS;
149 lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] );
150 rNormEdge[0] /= lAdj;
151 zNormEdge[0] /= lAdj;
152
153 nextRS = nextRZ->r-r[1];
154 nextZS = nextRZ->z-z[1];
155 lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS );
156 nextRS /= lAdj;
157 nextZS /= lAdj;
158
159 rNormEdge[1] = rNorm + nextZS;
160 zNormEdge[1] = zNorm - nextRS;
161 lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] );
162 rNormEdge[1] /= lAdj;
163 zNormEdge[1] /= lAdj;
164}
165
166// Fake default constructor - sets only member data and allocates memory
167// for usage restricted to object persistency.
168//
170 : startPhi(0.), deltaPhi(0.),
171 cone(0), rNorm(0.), zNorm(0.), rS(0.), zS(0.), length(0.),
172 prevRS(0.), prevZS(0.), nextRS(0.), nextZS(0.),
173 kCarTolerance(0.), instanceID(0)
174{
175 r[0] = r[1] = 0.;
176 z[0] = z[1] = 0.;
177 rNormEdge[0]= rNormEdge[1] = 0.;
178 zNormEdge[0]= zNormEdge[1] = 0.;
179}
180
181// Destructor
182//
184{
185 delete cone;
186 if (phiIsOpen) { delete [] corners; }
187}
188
189// Copy constructor
190//
192 : G4VCSGface()
193{
194 instanceID = subInstanceManager.CreateSubInstance();
195
196 CopyStuff( source );
197}
198
199// Assignment operator
200//
202{
203 if (this == &source) { return *this; }
204
205 delete cone;
206 if (phiIsOpen) { delete [] corners; }
207
208 CopyStuff( source );
209
210 return *this;
211}
212
213// CopyStuff
214//
216{
217 r[0] = source.r[0];
218 r[1] = source.r[1];
219 z[0] = source.z[0];
220 z[1] = source.z[1];
221
222 startPhi = source.startPhi;
223 deltaPhi = source.deltaPhi;
224 phiIsOpen = source.phiIsOpen;
225 allBehind = source.allBehind;
226
227 kCarTolerance = source.kCarTolerance;
228 fSurfaceArea = source.fSurfaceArea;
229
230 cone = new G4IntersectingCone( *source.cone );
231
232 rNorm = source.rNorm;
233 zNorm = source.zNorm;
234 rS = source.rS;
235 zS = source.zS;
236 length = source.length;
237 prevRS = source.prevRS;
238 prevZS = source.prevZS;
239 nextRS = source.nextRS;
240 nextZS = source.nextZS;
241
242 rNormEdge[0] = source.rNormEdge[0];
243 rNormEdge[1] = source.rNormEdge[1];
244 zNormEdge[0] = source.zNormEdge[0];
245 zNormEdge[1] = source.zNormEdge[1];
246
247 if (phiIsOpen)
248 {
249 ncorners = 4;
251
252 corners[0] = source.corners[0];
253 corners[1] = source.corners[1];
254 corners[2] = source.corners[2];
255 corners[3] = source.corners[3];
256 }
257}
258
259// Intersect
260//
262 const G4ThreeVector& v,
263 G4bool outgoing,
264 G4double surfTolerance,
265 G4double& distance,
266 G4double& distFromSurface,
267 G4ThreeVector& normal,
268 G4bool& isAllBehind )
269{
270 G4double s1, s2;
271 G4double normSign = outgoing ? +1 : -1;
272
273 isAllBehind = allBehind;
274
275 //
276 // Check for two possible intersections
277 //
278 G4int nside = cone->LineHitsCone( p, v, &s1, &s2 );
279 if (nside == 0) return false;
280
281 //
282 // Check the first side first, since it is (supposed to be) closest
283 //
284 G4ThreeVector hit = p + s1*v;
285
286 if (PointOnCone( hit, normSign, p, v, normal ))
287 {
288 //
289 // Good intersection! What about the normal?
290 //
291 if (normSign*v.dot(normal) > 0)
292 {
293 //
294 // We have a valid intersection, but it could very easily
295 // be behind the point. To decide if we tolerate this,
296 // we have to see if the point p is on the surface near
297 // the intersecting point.
298 //
299 // What does it mean exactly for the point p to be "near"
300 // the intersection? It means that if we draw a line from
301 // p to the hit, the line remains entirely within the
302 // tolerance bounds of the cone. To test this, we can
303 // ask if the normal is correct near p.
304 //
305 G4double pr = p.perp();
306 if (pr < DBL_MIN) pr = DBL_MIN;
307 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
308 if (normSign*v.dot(pNormal) > 0)
309 {
310 //
311 // p and intersection in same hemisphere
312 //
313 G4double distOutside2;
314 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
315 if (distOutside2 < surfTolerance*surfTolerance)
316 {
317 if (distFromSurface > -surfTolerance)
318 {
319 //
320 // We are just inside or away from the
321 // surface. Accept *any* value of distance.
322 //
323 distance = s1;
324 return true;
325 }
326 }
327 }
328 else
329 distFromSurface = s1;
330
331 //
332 // Accept positive distances
333 //
334 if (s1 > 0)
335 {
336 distance = s1;
337 return true;
338 }
339 }
340 }
341
342 if (nside==1) return false;
343
344 //
345 // Well, try the second hit
346 //
347 hit = p + s2*v;
348
349 if (PointOnCone( hit, normSign, p, v, normal ))
350 {
351 //
352 // Good intersection! What about the normal?
353 //
354 if (normSign*v.dot(normal) > 0)
355 {
356 G4double pr = p.perp();
357 if (pr < DBL_MIN) pr = DBL_MIN;
358 G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
359 if (normSign*v.dot(pNormal) > 0)
360 {
361 G4double distOutside2;
362 distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
363 if (distOutside2 < surfTolerance*surfTolerance)
364 {
365 if (distFromSurface > -surfTolerance)
366 {
367 distance = s2;
368 return true;
369 }
370 }
371 }
372 else
373 distFromSurface = s2;
374
375 if (s2 > 0)
376 {
377 distance = s2;
378 return true;
379 }
380 }
381 }
382
383 //
384 // Better luck next time
385 //
386 return false;
387}
388
389// Distance
390//
392{
393 G4double normSign = outgoing ? -1 : +1;
394 G4double distFrom, distOut2;
395
396 //
397 // We have two tries for each hemisphere. Try the closest first.
398 //
399 distFrom = normSign*DistanceAway( p, false, distOut2 );
400 if (distFrom > -0.5*kCarTolerance )
401 {
402 //
403 // Good answer
404 //
405 if (distOut2 > 0)
406 return std::sqrt( distFrom*distFrom + distOut2 );
407 else
408 return std::fabs(distFrom);
409 }
410
411 //
412 // Try second side.
413 //
414 distFrom = normSign*DistanceAway( p, true, distOut2 );
415 if (distFrom > -0.5*kCarTolerance)
416 {
417
418 if (distOut2 > 0)
419 return std::sqrt( distFrom*distFrom + distOut2 );
420 else
421 return std::fabs(distFrom);
422 }
423
424 return kInfinity;
425}
426
427// Inside
428//
430 G4double tolerance,
431 G4double* bestDistance )
432{
433 G4double distFrom, distOut2, dist2;
434 G4double edgeRZnorm;
435
436 distFrom = DistanceAway( p, distOut2, &edgeRZnorm );
437 dist2 = distFrom*distFrom + distOut2;
438
439 *bestDistance = std::sqrt( dist2);
440
441 // Okay then, inside or out?
442 //
443 if ( (std::fabs(edgeRZnorm) < tolerance)
444 && (distOut2< tolerance*tolerance) )
445 return kSurface;
446 else if (edgeRZnorm < 0)
447 return kInside;
448 else
449 return kOutside;
450}
451
452// Normal
453//
455 G4double* bestDistance )
456{
457 if (p == G4ThreeVector(0.,0.,0.)) { return p; }
458
459 G4double dFrom, dOut2;
460
461 dFrom = DistanceAway( p, false, dOut2 );
462
463 *bestDistance = std::sqrt( dFrom*dFrom + dOut2 );
464
465 G4double rds = p.perp();
466 if (rds!=0.) { return G4ThreeVector(rNorm*p.x()/rds,rNorm*p.y()/rds,zNorm); }
467 return G4ThreeVector( 0.,0., zNorm ).unit();
468}
469
470// Extent
471//
473{
474 if (axis.perp2() < DBL_MIN)
475 {
476 //
477 // Special case
478 //
479 return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
480 }
481
482 //
483 // Is the axis pointing inside our phi gap?
484 //
485 if (phiIsOpen)
486 {
487 G4double phi = GetPhi(axis);
488 while( phi < startPhi ) // Loop checking, 13.08.2015, G.Cosmo
489 phi += twopi;
490
491 if (phi > deltaPhi+startPhi)
492 {
493 //
494 // Yeah, looks so. Make four three vectors defining the phi
495 // opening
496 //
497 G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi);
498 G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] );
499 G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] );
500 cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi);
501 G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] );
502 G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] );
503
504 G4double ad = axis.dot(a),
505 bd = axis.dot(b),
506 cd = axis.dot(c),
507 dd = axis.dot(d);
508
509 if (bd > ad) ad = bd;
510 if (cd > ad) ad = cd;
511 if (dd > ad) ad = dd;
512
513 return ad;
514 }
515 }
516
517 //
518 // Check either end
519 //
520 G4double aPerp = axis.perp();
521
522 G4double a = aPerp*r[0] + axis.z()*z[0];
523 G4double b = aPerp*r[1] + axis.z()*z[1];
524
525 if (b > a) a = b;
526
527 return a;
528}
529
530// CalculateExtent
531//
532// See notes in G4VCSGface
533//
535 const G4VoxelLimits& voxelLimit,
536 const G4AffineTransform& transform,
537 G4SolidExtentList& extentList )
538{
539 G4ClippablePolygon polygon;
540
541 //
542 // Here we will approximate (ala G4Cons) and divide our conical section
543 // into segments, like G4Polyhedra. When doing so, the radius
544 // is extented far enough such that the segments always lie
545 // just outside the surface of the conical section we are
546 // approximating.
547 //
548
549 //
550 // Choose phi size of our segment(s) based on constants as
551 // defined in meshdefs.hh
552 //
553 G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1;
554 if (numPhi < kMinMeshSections)
555 numPhi = kMinMeshSections;
556 else if (numPhi > kMaxMeshSections)
557 numPhi = kMaxMeshSections;
558
559 G4double sigPhi = deltaPhi/numPhi;
560
561 //
562 // Determine radius factor to keep segments outside
563 //
564 G4double rFudge = 1.0/std::cos(0.5*sigPhi);
565
566 //
567 // Decide which radius to use on each end of the side,
568 // and whether a transition mesh is required
569 //
570 // {r0,z0} - Beginning of this side
571 // {r1,z1} - Ending of this side
572 // {r2,z0} - Beginning of transition piece connecting previous
573 // side (and ends at beginning of this side)
574 //
575 // So, order is 2 --> 0 --> 1.
576 // -------
577 //
578 // r2 < 0 indicates that no transition piece is required
579 //
580 G4double r0, r1, r2, z0, z1;
581
582 r2 = -1; // By default: no transition piece
583
584 if (rNorm < -DBL_MIN)
585 {
586 //
587 // This side faces *inward*, and so our mesh has
588 // the same radius
589 //
590 r1 = r[1];
591 z1 = z[1];
592 z0 = z[0];
593 r0 = r[0];
594
595 r2 = -1;
596
597 if (prevZS > DBL_MIN)
598 {
599 //
600 // The previous side is facing outwards
601 //
602 if ( prevRS*zS - prevZS*rS > 0 )
603 {
604 //
605 // Transition was convex: build transition piece
606 //
607 if (r[0] > DBL_MIN) r2 = r[0]*rFudge;
608 }
609 else
610 {
611 //
612 // Transition was concave: short this side
613 //
614 FindLineIntersect( z0, r0, zS, rS,
615 z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 );
616 }
617 }
618
619 if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
620 {
621 //
622 // The next side is facing outwards, forming a
623 // concave transition: short this side
624 //
625 FindLineIntersect( z1, r1, zS, rS,
626 z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 );
627 }
628 }
629 else if (rNorm > DBL_MIN)
630 {
631 //
632 // This side faces *outward* and is given a boost to
633 // it radius
634 //
635 r0 = r[0]*rFudge;
636 z0 = z[0];
637 r1 = r[1]*rFudge;
638 z1 = z[1];
639
640 if (prevZS < -DBL_MIN)
641 {
642 //
643 // The previous side is facing inwards
644 //
645 if ( prevRS*zS - prevZS*rS > 0 )
646 {
647 //
648 // Transition was convex: build transition piece
649 //
650 if (r[0] > DBL_MIN) r2 = r[0];
651 }
652 else
653 {
654 //
655 // Transition was concave: short this side
656 //
657 FindLineIntersect( z0, r0, zS, rS*rFudge,
658 z0, r[0], prevZS, prevRS, z0, r0 );
659 }
660 }
661
662 if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
663 {
664 //
665 // The next side is facing inwards, forming a
666 // concave transition: short this side
667 //
668 FindLineIntersect( z1, r1, zS, rS*rFudge,
669 z1, r[1], nextZS, nextRS, z1, r1 );
670 }
671 }
672 else
673 {
674 //
675 // This side is perpendicular to the z axis (is a disk)
676 //
677 // Whether or not r0 needs a rFudge factor depends
678 // on the normal of the previous edge. Similar with r1
679 // and the next edge. No transition piece is required.
680 //
681 r0 = r[0];
682 r1 = r[1];
683 z0 = z[0];
684 z1 = z[1];
685
686 if (prevZS > DBL_MIN) r0 *= rFudge;
687 if (nextZS > DBL_MIN) r1 *= rFudge;
688 }
689
690 //
691 // Loop
692 //
693 G4double phi = startPhi,
694 cosPhi = std::cos(phi),
695 sinPhi = std::sin(phi);
696
697 G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ),
698 v1( r1*cosPhi, r1*sinPhi, z1 ),
699 v2, w0, w1, w2;
700 transform.ApplyPointTransform( v0 );
701 transform.ApplyPointTransform( v1 );
702
703 if (r2 >= 0)
704 {
705 v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
706 transform.ApplyPointTransform( v2 );
707 }
708
709 do // Loop checking, 13.08.2015, G.Cosmo
710 {
711 phi += sigPhi;
712 if (numPhi == 1) phi = startPhi+deltaPhi; // Try to avoid roundoff
713 cosPhi = std::cos(phi),
714 sinPhi = std::sin(phi);
715
716 w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 );
717 w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 );
718 transform.ApplyPointTransform( w0 );
719 transform.ApplyPointTransform( w1 );
720
721 G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1;
722
723 //
724 // Build polygon, taking special care to keep the vertices
725 // in order
726 //
727 polygon.ClearAllVertices();
728
729 polygon.AddVertexInOrder( v0 );
730 polygon.AddVertexInOrder( v1 );
731 polygon.AddVertexInOrder( w1 );
732 polygon.AddVertexInOrder( w0 );
733
734 //
735 // Get extent
736 //
737 if (polygon.PartialClip( voxelLimit, axis ))
738 {
739 //
740 // Get dot product of normal with target axis
741 //
742 polygon.SetNormal( deltaV.cross(v1-v0).unit() );
743
744 extentList.AddSurface( polygon );
745 }
746
747 if (r2 >= 0)
748 {
749 //
750 // Repeat, for transition piece
751 //
752 w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
753 transform.ApplyPointTransform( w2 );
754
755 polygon.ClearAllVertices();
756
757 polygon.AddVertexInOrder( v2 );
758 polygon.AddVertexInOrder( v0 );
759 polygon.AddVertexInOrder( w0 );
760 polygon.AddVertexInOrder( w2 );
761
762 if (polygon.PartialClip( voxelLimit, axis ))
763 {
764 polygon.SetNormal( deltaV.cross(v0-v2).unit() );
765
766 extentList.AddSurface( polygon );
767 }
768
769 v2 = w2;
770 }
771
772 //
773 // Next vertex
774 //
775 v0 = w0;
776 v1 = w1;
777 } while( --numPhi > 0 );
778
779 //
780 // We are almost done. But, it is important that we leave no
781 // gaps in the surface of our solid. By using rFudge, however,
782 // we've done exactly that, if we have a phi segment.
783 // Add two additional faces if necessary
784 //
785 if (phiIsOpen && rNorm > DBL_MIN)
786 {
787 cosPhi = std::cos(startPhi);
788 sinPhi = std::sin(startPhi);
789
790 G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
791 a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
792 b0( r0*cosPhi, r0*sinPhi, z[0] ),
793 b1( r1*cosPhi, r1*sinPhi, z[1] );
794
795 transform.ApplyPointTransform( a0 );
796 transform.ApplyPointTransform( a1 );
797 transform.ApplyPointTransform( b0 );
798 transform.ApplyPointTransform( b1 );
799
800 polygon.ClearAllVertices();
801
802 polygon.AddVertexInOrder( a0 );
803 polygon.AddVertexInOrder( a1 );
804 polygon.AddVertexInOrder( b0 );
805 polygon.AddVertexInOrder( b1 );
806
807 if (polygon.PartialClip( voxelLimit , axis))
808 {
809 G4ThreeVector normal( sinPhi, -cosPhi, 0 );
810 polygon.SetNormal( transform.TransformAxis( normal ) );
811
812 extentList.AddSurface( polygon );
813 }
814
815 cosPhi = std::cos(startPhi+deltaPhi);
816 sinPhi = std::sin(startPhi+deltaPhi);
817
818 a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
819 a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
820 b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ),
821 b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] );
822 transform.ApplyPointTransform( a0 );
823 transform.ApplyPointTransform( a1 );
824 transform.ApplyPointTransform( b0 );
825 transform.ApplyPointTransform( b1 );
826
827 polygon.ClearAllVertices();
828
829 polygon.AddVertexInOrder( a0 );
830 polygon.AddVertexInOrder( a1 );
831 polygon.AddVertexInOrder( b0 );
832 polygon.AddVertexInOrder( b1 );
833
834 if (polygon.PartialClip( voxelLimit, axis ))
835 {
836 G4ThreeVector normal( -sinPhi, cosPhi, 0 );
837 polygon.SetNormal( transform.TransformAxis( normal ) );
838
839 extentList.AddSurface( polygon );
840 }
841 }
842
843 return;
844}
845
846// GetPhi
847//
848// Calculate Phi for a given 3-vector (point), if not already cached for the
849// same point, in the attempt to avoid consecutive computation of the same
850// quantity
851//
853{
854 G4double val=0.;
856
857 if (vphi != p)
858 {
859 val = p.phi();
860 G4MT_pcphix = p.x(); G4MT_pcphiy = p.y(); G4MT_pcphiz = p.z();
861 G4MT_pcphik = val;
862 }
863 else
864 {
865 val = G4MT_pcphik;
866 }
867 return val;
868}
869
870// DistanceAway
871//
872// Calculate distance of a point from our conical surface, including the effect
873// of any phi segmentation
874//
875// Arguments:
876// p - (in) Point to check
877// opposite - (in) If true, check opposite hemisphere (see below)
878// distOutside - (out) Additional distance outside the edges of the surface
879// edgeRZnorm - (out) if negative, point is inside
880//
881// return value = distance from the conical plane, if extrapolated beyond edges,
882// signed by whether the point is in inside or outside the shape
883//
884// Notes:
885// * There are two answers, depending on which hemisphere is considered.
886//
888 G4bool opposite,
889 G4double& distOutside2,
890 G4double* edgeRZnorm )
891{
892 //
893 // Convert our point to r and z
894 //
895 G4double rx = p.perp(), zx = p.z();
896
897 //
898 // Change sign of r if opposite says we should
899 //
900 if (opposite) rx = -rx;
901
902 //
903 // Calculate return value
904 //
905 G4double deltaR = rx - r[0], deltaZ = zx - z[0];
906 G4double answer = deltaR*rNorm + deltaZ*zNorm;
907
908 //
909 // Are we off the surface in r,z space?
910 //
911 G4double q = deltaR*rS + deltaZ*zS;
912 if (q < 0)
913 {
914 distOutside2 = q*q;
915 if (edgeRZnorm != nullptr)
916 *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0];
917 }
918 else if (q > length)
919 {
920 distOutside2 = sqr( q-length );
921 if (edgeRZnorm != nullptr)
922 {
923 deltaR = rx - r[1];
924 deltaZ = zx - z[1];
925 *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1];
926 }
927 }
928 else
929 {
930 distOutside2 = 0.;
931 if (edgeRZnorm != nullptr) *edgeRZnorm = answer;
932 }
933
934 if (phiIsOpen)
935 {
936 //
937 // Finally, check phi
938 //
939 G4double phi = GetPhi(p);
940 while( phi < startPhi ) // Loop checking, 13.08.2015, G.Cosmo
941 phi += twopi;
942
943 if (phi > startPhi+deltaPhi)
944 {
945 //
946 // Oops. Are we closer to the start phi or end phi?
947 //
948 G4double d1 = phi-startPhi-deltaPhi;
949 while( phi > startPhi ) // Loop checking, 13.08.2015, G.Cosmo
950 phi -= twopi;
951 G4double d2 = startPhi-phi;
952
953 if (d2 < d1) d1 = d2;
954
955 //
956 // Add result to our distance
957 //
958 G4double dist = d1*rx;
959
960 distOutside2 += dist*dist;
961 if (edgeRZnorm != nullptr)
962 {
963 *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
964 }
965 }
966 }
967
968 return answer;
969}
970
971// DistanceAway
972//
973// Special version of DistanceAway for Inside.
974// Opposite parameter is not used, instead use sign of rx for choosing the side
975//
977 G4double& distOutside2,
978 G4double* edgeRZnorm )
979{
980 //
981 // Convert our point to r and z
982 //
983 G4double rx = p.perp(), zx = p.z();
984
985 //
986 // Change sign of r if we should
987 //
988 G4int part = 1;
989 if (rx < 0) part = -1;
990
991 //
992 // Calculate return value
993 //
994 G4double deltaR = rx - r[0]*part, deltaZ = zx - z[0];
995 G4double answer = deltaR*rNorm*part + deltaZ*zNorm;
996
997 //
998 // Are we off the surface in r,z space?
999 //
1000 G4double q = deltaR*rS*part + deltaZ*zS;
1001 if (q < 0)
1002 {
1003 distOutside2 = q*q;
1004 if (edgeRZnorm != nullptr)
1005 {
1006 *edgeRZnorm = deltaR*rNormEdge[0]*part + deltaZ*zNormEdge[0];
1007 }
1008 }
1009 else if (q > length)
1010 {
1011 distOutside2 = sqr( q-length );
1012 if (edgeRZnorm != nullptr)
1013 {
1014 deltaR = rx - r[1]*part;
1015 deltaZ = zx - z[1];
1016 *edgeRZnorm = deltaR*rNormEdge[1]*part + deltaZ*zNormEdge[1];
1017 }
1018 }
1019 else
1020 {
1021 distOutside2 = 0.;
1022 if (edgeRZnorm != nullptr) *edgeRZnorm = answer;
1023 }
1024
1025 if (phiIsOpen)
1026 {
1027 //
1028 // Finally, check phi
1029 //
1030 G4double phi = GetPhi(p);
1031 while( phi < startPhi ) // Loop checking, 13.08.2015, G.Cosmo
1032 phi += twopi;
1033
1034 if (phi > startPhi+deltaPhi)
1035 {
1036 //
1037 // Oops. Are we closer to the start phi or end phi?
1038 //
1039 G4double d1 = phi-startPhi-deltaPhi;
1040 while( phi > startPhi ) // Loop checking, 13.08.2015, G.Cosmo
1041 phi -= twopi;
1042 G4double d2 = startPhi-phi;
1043
1044 if (d2 < d1) d1 = d2;
1045
1046 //
1047 // Add result to our distance
1048 //
1049 G4double dist = d1*rx*part;
1050
1051 distOutside2 += dist*dist;
1052 if (edgeRZnorm != nullptr)
1053 {
1054 *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
1055 }
1056 }
1057 }
1058
1059 return answer;
1060}
1061
1062// PointOnCone
1063//
1064// Decide if a point is on a cone and return normal if it is
1065//
1067 G4double normSign,
1068 const G4ThreeVector& p,
1069 const G4ThreeVector& v,
1070 G4ThreeVector& normal )
1071{
1072 G4double rx = hit.perp();
1073 //
1074 // Check radial/z extent, as appropriate
1075 //
1076 if (!cone->HitOn( rx, hit.z() )) return false;
1077
1078 if (phiIsOpen)
1079 {
1080 G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance);
1081 //
1082 // Check phi segment. Here we have to be careful
1083 // to use the standard method consistent with
1084 // PolyPhiFace. See PolyPhiFace::InsideEdgesExact
1085 //
1086 G4double phi = GetPhi(hit);
1087 while( phi < startPhi-phiTolerant ) // Loop checking, 13.08.2015, G.Cosmo
1088 phi += twopi;
1089
1090 if (phi > startPhi+deltaPhi+phiTolerant) return false;
1091
1092 if (phi > startPhi+deltaPhi-phiTolerant)
1093 {
1094 //
1095 // Exact treatment
1096 //
1097 G4ThreeVector qx = p + v;
1098 G4ThreeVector qa = qx - corners[2],
1099 qb = qx - corners[3];
1100 G4ThreeVector qacb = qa.cross(qb);
1101
1102 if (normSign*qacb.dot(v) < 0) return false;
1103 }
1104 else if (phi < phiTolerant)
1105 {
1106 G4ThreeVector qx = p + v;
1107 G4ThreeVector qa = qx - corners[1],
1108 qb = qx - corners[0];
1109 G4ThreeVector qacb = qa.cross(qb);
1110
1111 if (normSign*qacb.dot(v) < 0) return false;
1112 }
1113 }
1114
1115 //
1116 // We have a good hit! Calculate normal
1117 //
1118 if (rx < DBL_MIN)
1119 normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 );
1120 else
1121 normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm );
1122 return true;
1123}
1124
1125// FindLineIntersect
1126//
1127// Decide the point at which two 2-dimensional lines intersect
1128//
1129// Equation of line: x = x1 + s*tx1
1130// y = y1 + s*ty1
1131//
1132// It is assumed that the lines are *not* parallel
1133//
1135 G4double tx1, G4double ty1,
1136 G4double x2, G4double y2,
1137 G4double tx2, G4double ty2,
1138 G4double& x, G4double& y )
1139{
1140 //
1141 // The solution is a simple linear equation
1142 //
1143 G4double deter = tx1*ty2 - tx2*ty1;
1144
1145 G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter;
1146 G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter;
1147
1148 //
1149 // We want the answer to not depend on which order the
1150 // lines were specified. Take average.
1151 //
1152 x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );
1153 y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );
1154}
1155
1156// Calculate surface area for GetPointOnSurface()
1157//
1159{
1160 if(fSurfaceArea==0.)
1161 {
1162 fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1]));
1163 fSurfaceArea *= 0.5*(deltaPhi);
1164 }
1165 return fSurfaceArea;
1166}
1167
1168// GetPointOnFace
1169//
1171{
1172 G4double x,y,zz;
1173 G4double rr,phi,dz,dr;
1174 dr=r[1]-r[0];dz=z[1]-z[0];
1176 rr=r[0]+dr*G4UniformRand();
1177
1178 x=rr*std::cos(phi);
1179 y=rr*std::sin(phi);
1180
1181 // PolyconeSide has a Ring Form
1182 //
1183 if (dz==0.)
1184 {
1185 zz=z[0];
1186 }
1187 else
1188 {
1189 if(dr==0.) // PolyconeSide has a Tube Form
1190 {
1191 zz = z[0]+dz*G4UniformRand();
1192 }
1193 else
1194 {
1195 zz = z[0]+(rr-r[0])*dz/dr;
1196 }
1197 }
1198
1199 return G4ThreeVector(x,y,zz);
1200}
const G4double kCarTolerance
const G4double a0
#define G4MT_pcphiz
#define G4MT_pcphik
#define G4MT_pcphix
#define G4MT_pcphiy
CLHEP::Hep3Vector G4ThreeVector
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4UniformRand()
Definition: Randomize.hh:52
double z() const
Hep3Vector unit() const
double phi() const
double x() const
double y() const
Hep3Vector cross(const Hep3Vector &) const
double dot(const Hep3Vector &) const
double perp2() const
double perp() const
G4ThreeVector TransformAxis(const G4ThreeVector &axis) const
void ApplyPointTransform(G4ThreeVector &vec) const
virtual G4bool PartialClip(const G4VoxelLimits &voxelLimit, const EAxis IgnoreMe)
virtual void AddVertexInOrder(const G4ThreeVector vertex)
virtual void ClearAllVertices()
void SetNormal(const G4ThreeVector &newNormal)
G4int CreateSubInstance()
G4double GetSurfaceTolerance() const
static G4GeometryTolerance * GetInstance()
G4double ZHi() const
G4bool HitOn(const G4double r, const G4double z)
G4double ZLo() const
G4int LineHitsCone(const G4ThreeVector &p, const G4ThreeVector &v, G4double *s1, G4double *s2)
G4double Extent(const G4ThreeVector axis)
G4double zNormEdge[2]
G4ThreeVector GetPointOnFace()
G4ThreeVector Normal(const G4ThreeVector &p, G4double *bestDistance)
G4ThreeVector * corners
G4double GetPhi(const G4ThreeVector &p)
G4double SurfaceArea()
static void FindLineIntersect(G4double x1, G4double y1, G4double tx1, G4double ty1, G4double x2, G4double y2, G4double tx2, G4double ty2, G4double &x, G4double &y)
virtual ~G4PolyconeSide()
void CopyStuff(const G4PolyconeSide &source)
G4PolyconeSide(const G4PolyconeSideRZ *prevRZ, const G4PolyconeSideRZ *tail, const G4PolyconeSideRZ *head, const G4PolyconeSideRZ *nextRZ, G4double phiStart, G4double deltaPhi, G4bool phiIsOpen, G4bool isAllBehind=false)
void CalculateExtent(const EAxis axis, const G4VoxelLimits &voxelLimit, const G4AffineTransform &tranform, G4SolidExtentList &extentList)
G4double DistanceAway(const G4ThreeVector &p, G4bool opposite, G4double &distOutside2, G4double *rzNorm=nullptr)
G4bool Intersect(const G4ThreeVector &p, const G4ThreeVector &v, G4bool outgoing, G4double surfTolerance, G4double &distance, G4double &distFromSurface, G4ThreeVector &normal, G4bool &isAllBehind)
EInside Inside(const G4ThreeVector &p, G4double tolerance, G4double *bestDistance)
G4IntersectingCone * cone
G4bool PointOnCone(const G4ThreeVector &hit, G4double normSign, const G4ThreeVector &p, const G4ThreeVector &v, G4ThreeVector &normal)
G4double rNormEdge[2]
static const G4PlSideManager & GetSubInstanceManager()
G4PolyconeSide & operator=(const G4PolyconeSide &source)
G4double Distance(const G4ThreeVector &p, G4bool outgoing)
void AddSurface(const G4ClippablePolygon &surface)
EAxis
Definition: geomdefs.hh:54
EInside
Definition: geomdefs.hh:67
@ kInside
Definition: geomdefs.hh:70
@ kOutside
Definition: geomdefs.hh:68
@ kSurface
Definition: geomdefs.hh:69
const G4int kMaxMeshSections
Definition: meshdefs.hh:44
const G4int kMinMeshSections
Definition: meshdefs.hh:41
const G4double kMeshAngleDefault
Definition: meshdefs.hh:37
T sqr(const T &x)
Definition: templates.hh:128
#define DBL_MIN
Definition: templates.hh:54