Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4MuonToMuonPairProductionModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4MuonToMuonPairProductionModel
33//
34// Author: Siddharth Yajaman on the base of Vladimir Ivantchenko code
35//
36// Creation date: 12.07.2022
37//
38//
39// -------------------------------------------------------------------
40//
41//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
42//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
43
46#include "G4SystemOfUnits.hh"
47#include "G4EmParameters.hh"
48#include "G4MuonMinus.hh"
49#include "G4MuonPlus.hh"
50#include "Randomize.hh"
51#include "G4Material.hh"
52#include "G4Element.hh"
54#include "G4Log.hh"
55#include "G4Exp.hh"
56#include <iostream>
57#include <fstream>
58
59//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
60
61// static members
62//
63static const G4int nzdat = 5;
64static const G4int zdat[5] = {1, 4, 13, 29, 92};
65
66static const G4double xgi[] =
67{ 0.0198550717512320, 0.1016667612931865, 0.2372337950418355, 0.4082826787521750,
68 0.5917173212478250, 0.7627662049581645, 0.8983332387068135, 0.9801449282487680 };
69
70static const G4double wgi[] =
71{ 0.0506142681451880, 0.1111905172266870, 0.1568533229389435, 0.1813418916891810,
72 0.1813418916891810, 0.1568533229389435, 0.1111905172266870, 0.0506142681451880 };
73
74//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
75
76using namespace std;
77
79 const G4ParticleDefinition* p,
80 const G4String& nam)
82{
87 mueRatio = muonMass/CLHEP::electron_mass_c2;
88 factorForCross = 2./(3*CLHEP::pi)*
89 pow(CLHEP::fine_structure_const*CLHEP::classic_electr_radius/mueRatio, 2);
90}
91
92//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
93
95 G4double tkin,
96 G4double Z,
97 G4double pairEnergy)
98// Calculates the differential (D) microscopic cross section
99// using the cross section formula of Kelner, Kokoulin and Petrukhin (1999)
100// Code written by Siddharth Yajaman (12/07/2022)
101{
102 if (pairEnergy <= minPairEnergy)
103 return 0.0;
104
105 G4double totalEnergy = tkin + particleMass;
106 G4double residEnergy = totalEnergy - pairEnergy;
107
108 if (residEnergy <= muonMass) { return 0.0; }
109
110 G4double a0 = 1.0 / (totalEnergy * residEnergy);
111 G4double rhomax = 1.0 - 2*muonMass/pairEnergy;
112 G4double tmnexp = 1. - rhomax;
113
114 if(tmnexp >= 1.0) { return 0.0; }
115
116 G4double tmn = G4Log(tmnexp);
117
118 G4double z2 = Z*Z;
119 G4double beta = 0.5*pairEnergy*pairEnergy*a0;
120 G4double xi0 = 0.5*beta;
121
122 // Gaussian integration in ln(1-ro) ( with 8 points)
123 G4double rho[8];
124 G4double rho2[8];
125 G4double xi[8];
126 G4double xi1[8];
127 G4double xii[8];
128
129 for (G4int i = 0; i < 8; ++i)
130 {
131 rho[i] = G4Exp(tmn*xgi[i]) - 1.0; // rho = -asymmetry
132 rho2[i] = rho[i] * rho[i];
133 xi[i] = xi0*(1.0-rho2[i]);
134 xi1[i] = 1.0 + xi[i];
135 xii[i] = 1.0 / xi[i];
136 }
137
138 G4double ximax = xi0*(1. - rhomax*rhomax);
139
140 G4double Y = 10 * sqrt(particleMass/totalEnergy);
141 G4double U[8];
142
143 for (G4int i = 0; i < 8; ++i)
144 {
145 U[i] = U_func(Z, rho2[i], xi[i], Y, pairEnergy);
146 }
147
148 G4double UMax = U_func(Z, rhomax*rhomax, ximax, Y, pairEnergy);
149
150 G4double sum = 0.0;
151 for (G4int i = 0; i < 8; ++i)
152 {
153 G4double X = 1 + U[i] - UMax;
154 G4double lnX = G4Log(X);
155 G4double phi = ((2 + rho2[i])*(1 + beta) + xi[i]*(3 + rho2[i]))*
156 G4Log(1 + xii[i]) - 1 - 3*rho2[i] + beta*(1 - 2*rho2[i])
157 + ((1 + rho2[i])*(1 + 1.5*beta) - xii[i]*(1 + 2*beta)
158 *(1 - rho2[i]))*G4Log(xi1[i]);
159 sum += wgi[i]*(1.0 + rho[i])*phi*lnX;
160 }
161
162 return -tmn*sum*factorForCross*z2*residEnergy/(totalEnergy*pairEnergy);
163
164}
165
167 G4double xi, G4double Y,
168 G4double pairEnergy,
169 const G4double B)
170{
171 G4int Z = G4lrint(ZZ);
172 G4double A27 = nist->GetA27(Z);
173 G4double Z13 = nist->GetZ13(Z);
174 static const G4double sqe = std::sqrt(G4Exp(1.0));
175 G4double res = (0.65 * B / (A27*Z13) * mueRatio)/
176 (1 + (2*sqe*muonMass*muonMass*(B/Z13)*(1 + xi)*(1 + Y))
177 /(CLHEP::electron_mass_c2*pairEnergy*(1 - rho2)));
178 return res;
179}
180
181//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
182
184 std::vector<G4DynamicParticle*>* vdp,
185 const G4MaterialCutsCouple* couple,
186 const G4DynamicParticle* aDynamicParticle,
187 G4double tmin,
188 G4double tmax)
189{
190 G4double kinEnergy = aDynamicParticle->GetKineticEnergy();
191 //G4cout << "--- G4MuonToMuonPairProductionModel::SampleSecondaries E(MeV)= "
192 // << kinEnergy << " "
193 // << aDynamicParticle->GetDefinition()->GetParticleName() << G4endl;
194 G4double totalMomentum = std::sqrt(kinEnergy*(kinEnergy + 2.0*muonMass));
195
196 G4ThreeVector partDirection = aDynamicParticle->GetMomentumDirection();
197
198 // select randomly one element constituing the material
199 const G4Element* anElement = SelectRandomAtom(couple,particle,kinEnergy);
200
201 // define interval of energy transfer
202 G4double maxPairEnergy = MaxSecondaryEnergyForElement(kinEnergy,
203 anElement->GetZ());
204 G4double maxEnergy = std::min(tmax, maxPairEnergy);
205 G4double minEnergy = std::max(tmin, minPairEnergy);
206
207 if(minEnergy >= maxEnergy) { return; }
208 //G4cout << "emin= " << minEnergy << " emax= " << maxEnergy
209 // << " minPair= " << minPairEnergy << " maxpair= " << maxPairEnergy
210 // << " ymin= " << ymin << " dy= " << dy << G4endl;
211
212 G4double coeff = G4Log(minPairEnergy/kinEnergy)/ymin;
213
214 // compute limits
215 G4double yymin = G4Log(minEnergy/kinEnergy)/coeff;
216 G4double yymax = G4Log(maxEnergy/kinEnergy)/coeff;
217
218 //G4cout << "yymin= " << yymin << " yymax= " << yymax << G4endl;
219
220 // units should not be used, bacause table was built without
221 G4double logTkin = G4Log(kinEnergy/CLHEP::MeV);
222
223 // sample mu-mu+ pair energy first
224
225 // select sample table via Z
226 G4int iz1(0), iz2(0);
227 for(G4int iz=0; iz<nzdat; ++iz) {
228 if(currentZ == zdat[iz]) {
229 iz1 = iz2 = currentZ;
230 break;
231 } else if(currentZ < zdat[iz]) {
232 iz2 = zdat[iz];
233 if(iz > 0) { iz1 = zdat[iz-1]; }
234 else { iz1 = iz2; }
235 break;
236 }
237 }
238 if(0 == iz1) { iz1 = iz2 = zdat[nzdat-1]; }
239
240 G4double pairEnergy = 0.0;
241 G4int count = 0;
242 //G4cout << "start loop Z1= " << iz1 << " Z2= " << iz2 << G4endl;
243 do {
244 ++count;
245 // sampling using only one random number
246 G4double rand = G4UniformRand();
247
248 G4double x = FindScaledEnergy(iz1, rand, logTkin, yymin, yymax);
249 if(iz1 != iz2) {
250 G4double x2 = FindScaledEnergy(iz2, rand, logTkin, yymin, yymax);
251 G4double lz1= nist->GetLOGZ(iz1);
252 G4double lz2= nist->GetLOGZ(iz2);
253 //G4cout << count << ". x= " << x << " x2= " << x2
254 // << " Z1= " << iz1 << " Z2= " << iz2 << G4endl;
255 x += (x2 - x)*(lnZ - lz1)/(lz2 - lz1);
256 }
257 //G4cout << "x= " << x << " coeff= " << coeff << G4endl;
258 pairEnergy = kinEnergy*G4Exp(x*coeff);
259
260 // Loop checking, 03-Aug-2015, Vladimir Ivanchenko
261 } while((pairEnergy < minEnergy || pairEnergy > maxEnergy) && 10 > count);
262
263 //G4cout << "## pairEnergy(GeV)= " << pairEnergy/GeV
264 // << " Etot(GeV)= " << totalEnergy/GeV << G4endl;
265
266 // sample r=(mu+mu-)/pairEnergy ( uniformly .....)
267 G4double rmax = 1 - 2*muonMass/(pairEnergy);
268 G4double r = rmax * (-1.+2.*G4UniformRand()) ;
269
270 // compute energies from pairEnergy,r
271 G4double muMinusEnergy = (1.-r)*pairEnergy*0.5;
272 G4double muPlusEnergy = pairEnergy - muMinusEnergy;
273
274 // Sample angles
275 G4ThreeVector muMinusDirection, muPlusDirection;
276 //
277 GetAngularDistribution()->SamplePairDirections(aDynamicParticle,
278 muMinusEnergy, muPlusEnergy,
279 muMinusDirection, muPlusDirection);
280 // create G4DynamicParticle object for mu+mu-
281 muMinusEnergy = std::max(muMinusEnergy - muonMass, 0.0);
282 muPlusEnergy = std::max(muPlusEnergy - muonMass, 0.0);
283 G4DynamicParticle* aParticle1 =
284 new G4DynamicParticle(theMuonMinus,muMinusDirection,muMinusEnergy);
285 G4DynamicParticle* aParticle2 =
286 new G4DynamicParticle(theMuonPlus,muPlusDirection,muPlusEnergy);
287 // Fill output vector
288 vdp->push_back(aParticle1);
289 vdp->push_back(aParticle2);
290
291 // primary change
292 kinEnergy -= pairEnergy;
293 partDirection *= totalMomentum;
294 partDirection -= (aParticle1->GetMomentum() + aParticle2->GetMomentum());
295 partDirection = partDirection.unit();
296
297 // if energy transfer is higher than threshold (very high by default)
298 // then stop tracking the primary particle and create a new secondary
299 if (pairEnergy > SecondaryThreshold()) {
302 G4DynamicParticle* newdp =
303 new G4DynamicParticle(particle, partDirection, kinEnergy);
304 vdp->push_back(newdp);
305 } else { // continue tracking the primary e-/e+ otherwise
308 }
309 //G4cout << "--- G4MuonToMuonPairProductionModel::SampleSecondaries done" << G4endl;
310}
311
312//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
313
315{
317 ed << "G4ElementData is not properly initialized Z= " << Z
318 << " Ekin(MeV)= " << G4Exp(logTkin)
319 << " IsMasterThread= " << IsMaster()
320 << " Model " << GetName();
321 G4Exception("G4MuonToMuonPairProductionModel","em0033",FatalException,ed,"");
322}
323
324//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
G4double B(G4double temperature)
G4double Y(G4double density)
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
const G4double a0
G4double G4Log(G4double x)
Definition: G4Log.hh:227
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4ThreeVector GetMomentum() const
G4double GetZ() const
Definition: G4Element.hh:131
G4double FindScaledEnergy(G4int Z, G4double rand, G4double logTkin, G4double yymin, G4double yymax)
const G4ParticleDefinition * particle
G4ParticleChangeForLoss * fParticleChange
G4double MaxSecondaryEnergyForElement(G4double kineticEnergy, G4double Z)
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:99
static G4MuonPlus * MuonPlus()
Definition: G4MuonPlus.cc:98
G4double ComputeDMicroscopicCrossSection(G4double tkin, G4double Z, G4double pairEnergy) override
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4MuonToMuonPairProductionModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="muToMuonPairProd")
G4double U_func(G4double Z, G4double rho2, G4double xi, G4double Y, G4double pairEnergy, const G4double B=183)
void DataCorrupted(G4int Z, G4double logTkin) const override
G4double GetA27(G4int Z) const
G4double GetZ13(G4double Z) const
G4double GetLOGZ(G4int Z) const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
virtual void SamplePairDirections(const G4DynamicParticle *dp, G4double elecKinEnergy, G4double posiKinEnergy, G4ThreeVector &dirElectron, G4ThreeVector &dirPositron, G4int Z=0, const G4Material *mat=nullptr)
G4VEmAngularDistribution * GetAngularDistribution()
Definition: G4VEmModel.hh:600
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:561
const G4String & GetName() const
Definition: G4VEmModel.hh:816
G4double SecondaryThreshold() const
Definition: G4VEmModel.hh:669
void ProposeTrackStatus(G4TrackStatus status)
int G4lrint(double ad)
Definition: templates.hh:134