Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4LivermoreBremsstrahlungModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// -------------------------------------------------------------------
28//
29// GEANT4 Class file
30//
31//
32// File name: G4LivermoreBremsstrahlungModel
33//
34// Author: Vladimir Ivanchenko use inheritance from Andreas Schaelicke
35// base class implementing ultra relativistic bremsstrahlung
36// model
37//
38// Creation date: 04.10.2011
39//
40// Modifications:
41//
42// -------------------------------------------------------------------
43//
44//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
45//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
46
49#include "G4SystemOfUnits.hh"
50#include "G4Electron.hh"
51#include "G4Positron.hh"
52#include "G4Gamma.hh"
53#include "Randomize.hh"
54#include "G4AutoLock.hh"
55#include "G4Material.hh"
56#include "G4Element.hh"
57#include "G4ElementVector.hh"
60#include "G4Generator2BS.hh"
61
62#include "G4Physics2DVector.hh"
63#include "G4Exp.hh"
64#include "G4Log.hh"
65
66#include "G4ios.hh"
67#include <fstream>
68#include <iomanip>
69
70//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
71
72namespace { G4Mutex LivermoreBremsstrahlungModelMutex = G4MUTEX_INITIALIZER; }
73using namespace std;
74
75G4Physics2DVector* G4LivermoreBremsstrahlungModel::dataSB[] = {nullptr};
76G4double G4LivermoreBremsstrahlungModel::ylimit[] = {0.0};
77G4double G4LivermoreBremsstrahlungModel::expnumlim = -12.;
78
79static const G4double emaxlog = 4*G4Log(10.);
80static const G4double alpha = CLHEP::twopi*CLHEP::fine_structure_const;
81static const G4double epeaklimit= 300*CLHEP::MeV;
82static const G4double elowlimit = 20*CLHEP::keV;
83
85 const G4ParticleDefinition* p, const G4String& nam)
86 : G4eBremsstrahlungRelModel(p,nam),useBicubicInterpolation(false)
87{
88 SetLowEnergyLimit(10.0*eV);
89 SetLPMFlag(false);
91}
92
93//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
94
96{
97 if(IsMaster()) {
98 for(size_t i=0; i<101; ++i) {
99 if(dataSB[i]) {
100 delete dataSB[i];
101 dataSB[i] = nullptr;
102 }
103 }
104 }
105}
106
107//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
108
110 const G4DataVector& cuts)
111{
112 // Access to elements
113 if(IsMaster()) {
114 // check environment variable
115 // Build the complete string identifying the file with the data set
116 const char* path = G4FindDataDir("G4LEDATA");
117
118 const G4ElementTable* theElmTable = G4Element::GetElementTable();
119 size_t numOfElm = G4Element::GetNumberOfElements();
120 if(numOfElm > 0) {
121 for(size_t i=0; i<numOfElm; ++i) {
122 G4int Z = (*theElmTable)[i]->GetZasInt();
123 if(Z < 1) { Z = 1; }
124 else if(Z > 100) { Z = 100; }
125 //G4cout << "Z= " << Z << G4endl;
126 // Initialisation
127 if(!dataSB[Z]) { ReadData(Z, path); }
128 }
129 }
130 }
132}
133
134//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
135
137{
138 return "/livermore/brem/br";
139}
140
141//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
142
143void G4LivermoreBremsstrahlungModel::ReadData(G4int Z, const char* path)
144{
145 if(dataSB[Z]) { return; }
146 const char* datadir = path;
147
148 if(!datadir) {
149 datadir = G4FindDataDir("G4LEDATA");
150 if(!datadir) {
151 G4Exception("G4LivermoreBremsstrahlungModel::ReadData()","em0006",
152 FatalException,"Environment variable G4LEDATA not defined");
153 return;
154 }
155 }
156 std::ostringstream ost;
157 ost << datadir << DirectoryPath() << Z;
158 std::ifstream fin(ost.str().c_str());
159 if( !fin.is_open()) {
161 ed << "Bremsstrahlung data file <" << ost.str().c_str()
162 << "> is not opened!";
163 G4Exception("G4LivermoreBremsstrahlungModel::ReadData()","em0003",
165 "G4LEDATA version should be G4EMLOW8.0 or later.");
166 return;
167 }
168 //G4cout << "G4LivermoreBremsstrahlungModel read from <" << ost.str().c_str()
169 // << ">" << G4endl;
171 if(v->Retrieve(fin)) {
172 if(useBicubicInterpolation) { v->SetBicubicInterpolation(true); }
173 dataSB[Z] = v;
174 ylimit[Z] = v->Value(0.97, emaxlog, idx, idy);
175 } else {
177 ed << "Bremsstrahlung data file <" << ost.str().c_str()
178 << "> is not retrieved!";
179 G4Exception("G4LivermoreBremsstrahlungModel::ReadData()","em0005",
181 "G4LEDATA version should be G4EMLOW8.0 or later.");
182 delete v;
183 }
184}
185
186//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
187
190{
191 if(gammaEnergy < 0.0 || fPrimaryKinEnergy <= 0.0) { return 0.0; }
192 G4double x = gammaEnergy/fPrimaryKinEnergy;
195
196 //G4cout << "G4LivermoreBremsstrahlungModel::ComputeDXSectionPerAtom Z= " << Z
197 // << " x= " << x << " y= " << y << " " << dataSB[Z] << G4endl;
198 if(!dataSB[Z]) { InitialiseForElement(0, Z); }
199
202 G4double cross = dataSB[Z]->Value(x,y,idx,idy)*invb2*millibarn/gBremFactor;
203
204 if(!fIsElectron) {
205 G4double invbeta1 = sqrt(invb2);
206 G4double e2 = fPrimaryKinEnergy - gammaEnergy;
207 if(e2 > 0.0) {
208 G4double invbeta2 = (e2 + fPrimaryParticleMass)
209 /sqrt(e2*(e2 + 2.*fPrimaryParticleMass));
210 G4double xxx = alpha*fCurrentIZ*(invbeta1 - invbeta2);
211 if(xxx < expnumlim) { cross = 0.0; }
212 else { cross *= G4Exp(xxx); }
213 } else {
214 cross = 0.0;
215 }
216 }
217
218 return cross;
219}
220
221//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
222
223void
225 std::vector<G4DynamicParticle*>* vdp,
226 const G4MaterialCutsCouple* couple,
227 const G4DynamicParticle* dp,
228 G4double cutEnergy,
229 G4double maxEnergy)
230{
231 G4double kineticEnergy = dp->GetKineticEnergy();
232 G4double cut = std::min(cutEnergy, kineticEnergy);
233 G4double emax = std::min(maxEnergy, kineticEnergy);
234 if(cut >= emax) { return; }
235 // sets total energy, kinetic energy and density correction
236 SetupForMaterial(fPrimaryParticle, couple->GetMaterial(), kineticEnergy);
237
238 const G4Element* elm =
239 SelectRandomAtom(couple,fPrimaryParticle,kineticEnergy,cut,emax);
240 fCurrentIZ = elm->GetZasInt();
242
243 G4double totMomentum = sqrt(kineticEnergy*(fPrimaryTotalEnergy+electron_mass_c2));
244 /*
245 G4cout << "G4LivermoreBremsstrahlungModel::SampleSecondaries E(MeV)= "
246 << kineticEnergy/MeV
247 << " Z= " << Z << " cut(MeV)= " << cut/MeV
248 << " emax(MeV)= " << emax/MeV << " corr= " << fDensityCorr << G4endl;
249 */
250 G4double xmin = G4Log(cut*cut + fDensityCorr);
251 G4double xmax = G4Log(emax*emax + fDensityCorr);
252 G4double y = G4Log(kineticEnergy/MeV);
253
254 G4double gammaEnergy, v;
255
256 // majoranta
257 G4double x0 = cut/kineticEnergy;
258 G4double vmax = dataSB[Z]->Value(x0, y, idx, idy)*1.02;
259
260 // majoranta corrected for e-
261 if(fIsElectron && x0 < 0.97 &&
262 ((kineticEnergy > epeaklimit) || (kineticEnergy < elowlimit))) {
263 G4double ylim = std::min(ylimit[Z],1.1*dataSB[Z]->Value(0.97,y,idx,idy));
264 if(ylim > vmax) { vmax = ylim; }
265 }
266 if(x0 < 0.05) { vmax *= 1.2; }
267
268 do {
269 //++ncount;
270 G4double x = G4Exp(xmin + G4UniformRand()*(xmax - xmin)) - fDensityCorr;
271 if(x < 0.0) { x = 0.0; }
272 gammaEnergy = sqrt(x);
273 G4double x1 = gammaEnergy/kineticEnergy;
274 v = dataSB[Z]->Value(x1, y, idx, idy);
275
276 // correction for positrons
277 if(!fIsElectron) {
278 G4double e1 = kineticEnergy - cut;
279 G4double invbeta1 = (e1 + fPrimaryParticleMass)
280 /sqrt(e1*(e1 + 2*fPrimaryParticleMass));
281 G4double e2 = kineticEnergy - gammaEnergy;
282 G4double invbeta2 = (e2 + fPrimaryParticleMass)
283 /sqrt(e2*(e2 + 2*fPrimaryParticleMass));
284 G4double xxx = twopi*fine_structure_const*fCurrentIZ*(invbeta1 - invbeta2);
285
286 if(xxx < expnumlim) { v = 0.0; }
287 else { v *= G4Exp(xxx); }
288 }
289
290 if (v > 1.05*vmax && nwarn < 5) {
291 ++nwarn;
293 ed << "### G4LivermoreBremsstrahlungModel Warning: Majoranta exceeded! "
294 << v << " > " << vmax << " by " << v/vmax
295 << " Egamma(MeV)= " << gammaEnergy
296 << " Ee(MeV)= " << kineticEnergy
297 << " Z= " << Z << " " << fPrimaryParticle->GetParticleName();
298
299 if ( 20 == nwarn ) {
300 ed << "\n ### G4LivermoreBremsstrahlungModel Warnings stopped";
301 }
302 G4Exception("G4LivermoreBremsstrahlungModel::SampleScattering","em0044",
303 JustWarning, ed,"");
304
305 }
306 } while (v < vmax*G4UniformRand());
307
308 //
309 // angles of the emitted gamma. ( Z - axis along the parent particle)
310 // use general interface
311 //
312
313 G4ThreeVector gammaDirection =
315 Z, couple->GetMaterial());
316
317 // create G4DynamicParticle object for the Gamma
318 G4DynamicParticle* gamma =
319 new G4DynamicParticle(fGammaParticle,gammaDirection,gammaEnergy);
320 vdp->push_back(gamma);
321
322 G4ThreeVector direction = (totMomentum*dp->GetMomentumDirection()
323 - gammaEnergy*gammaDirection).unit();
324
325 /*
326 G4cout << "### G4SBModel: v= "
327 << " Eg(MeV)= " << gammaEnergy
328 << " Ee(MeV)= " << kineticEnergy
329 << " DirE " << direction << " DirG " << gammaDirection
330 << G4endl;
331 */
332 // energy of primary
333 G4double finalE = kineticEnergy - gammaEnergy;
334
335 // stop tracking and create new secondary instead of primary
336 if(gammaEnergy > SecondaryThreshold()) {
341 direction, finalE);
342 vdp->push_back(el);
343
344 // continue tracking
345 } else {
348 }
349}
350
351//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
352
355 G4int Z)
356{
357 G4AutoLock l(&LivermoreBremsstrahlungModelMutex);
358 if(!dataSB[Z]) { ReadData(Z); }
359 l.unlock();
360}
361
362//....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
std::vector< G4Element * > G4ElementTable
const char * G4FindDataDir(const char *)
@ JustWarning
@ FatalException
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *description)
Definition: G4Exception.cc:59
std::ostringstream G4ExceptionDescription
Definition: G4Exception.hh:40
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:180
G4double G4Log(G4double x)
Definition: G4Log.hh:227
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:85
std::mutex G4Mutex
Definition: G4Threading.hh:81
@ fStopAndKill
double G4double
Definition: G4Types.hh:83
int G4int
Definition: G4Types.hh:85
const G4int Z[17]
#define G4UniformRand()
Definition: Randomize.hh:52
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
static G4ElementTable * GetElementTable()
Definition: G4Element.cc:403
static size_t GetNumberOfElements()
Definition: G4Element.cc:410
G4int GetZasInt() const
Definition: G4Element.hh:132
G4LivermoreBremsstrahlungModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="LowEnBrem")
void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double cutEnergy, G4double maxEnergy) override
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
void InitialiseForElement(const G4ParticleDefinition *, G4int Z) override
G4double ComputeDXSectionPerAtom(G4double gammaEnergy) override
const G4Material * GetMaterial() const
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
const G4String & GetParticleName() const
G4bool Retrieve(std::ifstream &fIn)
G4double Value(G4double x, G4double y, std::size_t &lastidx, std::size_t &lastidy) const
void SetBicubicInterpolation(G4bool)
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
G4VEmAngularDistribution * GetAngularDistribution()
Definition: G4VEmModel.hh:600
G4bool IsMaster() const
Definition: G4VEmModel.hh:725
void SetLPMFlag(G4bool val)
Definition: G4VEmModel.hh:795
virtual G4double Value(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
Definition: G4VEmModel.cc:349
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:561
void SetLowEnergyLimit(G4double)
Definition: G4VEmModel.hh:753
void SetAngularDistribution(G4VEmAngularDistribution *)
Definition: G4VEmModel.hh:607
G4double SecondaryThreshold() const
Definition: G4VEmModel.hh:669
void ProposeTrackStatus(G4TrackStatus status)
const G4ParticleDefinition * fPrimaryParticle
G4ParticleDefinition * fGammaParticle
void SetupForMaterial(const G4ParticleDefinition *, const G4Material *, G4double) override
G4ParticleChangeForLoss * fParticleChange
void Initialise(const G4ParticleDefinition *, const G4DataVector &) override