Geant4 11.1.1
Toolkit for the simulation of the passage of particles through matter
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4NeutronElectronElModel.cc
Go to the documentation of this file.
1//
2// ********************************************************************
3// * License and Disclaimer *
4// * *
5// * The Geant4 software is copyright of the Copyright Holders of *
6// * the Geant4 Collaboration. It is provided under the terms and *
7// * conditions of the Geant4 Software License, included in the file *
8// * LICENSE and available at http://cern.ch/geant4/license . These *
9// * include a list of copyright holders. *
10// * *
11// * Neither the authors of this software system, nor their employing *
12// * institutes,nor the agencies providing financial support for this *
13// * work make any representation or warranty, express or implied, *
14// * regarding this software system or assume any liability for its *
15// * use. Please see the license in the file LICENSE and URL above *
16// * for the full disclaimer and the limitation of liability. *
17// * *
18// * This code implementation is the result of the scientific and *
19// * technical work of the GEANT4 collaboration. *
20// * By using, copying, modifying or distributing the software (or *
21// * any work based on the software) you agree to acknowledge its *
22// * use in resulting scientific publications, and indicate your *
23// * acceptance of all terms of the Geant4 Software license. *
24// ********************************************************************
25//
26//
27// Geant4 Header : G4NeutronElectronElModel
28//
29// 16.5.17: V.Grichine
30//
31
33#include "G4SystemOfUnits.hh"
34#include "G4ParticleTable.hh"
36#include "G4IonTable.hh"
37#include "Randomize.hh"
38#include "G4Integrator.hh"
39#include "G4Electron.hh"
40#include "G4PhysicsTable.hh"
41#include "G4PhysicsLogVector.hh"
44
45
46using namespace std;
47using namespace CLHEP;
48
50 : G4HadronElastic(name)
51{
52 secID = G4PhysicsModelCatalog::GetModelID( "model_" + name );
53
54 // neutron magneton squared
55
56 fM = neutron_mass_c2; // neutron mass
57 fM2 = fM*fM;
58 fme = electron_mass_c2;
59 fme2 = fme*fme;
60 fMv2 = 0.7056*GeV*GeV;
61
62 SetMinEnergy( 0.001*GeV );
63 SetMaxEnergy( 10.*TeV );
64 SetLowestEnergyLimit(1.e-6*eV);
65
66 theElectron = G4Electron::Electron();
67 // PDG2016: sin^2 theta Weinberg
68
69 fEnergyBin = 200;
70 fMinEnergy = 1.*MeV;
71 fMaxEnergy = 10000.*GeV;
72 fEnergyVector = new G4PhysicsLogVector(fMinEnergy, fMaxEnergy, fEnergyBin, false);
73
74 fAngleBin = 500;
75 fAngleTable = 0;
76
77 fCutEnergy = 0.; // default value
78
79 Initialise();
80}
81
82////////////////////////////////////////////////
83
85{
86 if( fEnergyVector )
87 {
88 delete fEnergyVector;
89 fEnergyVector = nullptr;
90 }
91 if( fAngleTable )
92 {
93 fAngleTable->clearAndDestroy();
94 delete fAngleTable;
95 fAngleTable = nullptr;
96 }
97}
98
99/////////////////////////////////////////
100
101void G4NeutronElectronElModel::ModelDescription(std::ostream& outFile) const
102{
103 outFile << "G4NeutronElectronElModel is a neutrino-electron (neutral current) elastic scattering\n"
104 << "model which uses the standard model \n"
105 << "transfer parameterization. The model is fully relativistic\n";
106}
107
108/////////////////////////////////////////////////////////
109
111{
112 G4String pName = aTrack.GetDefinition()->GetParticleName();
113 G4double energy = aTrack.GetTotalEnergy();
114
115 return (pName == "neutron" && energy >= fMinEnergy && energy <= fMaxEnergy);
116}
117
118////////////////////////////////////////////////////
119
121{
122 G4double result = 0., sum, Tkin, dt, t1, t2;
123 G4int iTkin, jTransfer;
125
126 fAngleTable = new G4PhysicsTable(fEnergyBin);
127
128 for( iTkin = 0; iTkin < fEnergyBin; iTkin++)
129 {
130 Tkin = fEnergyVector->GetLowEdgeEnergy(iTkin);
131 fAm = CalculateAm(Tkin);
132 dt = 1./fAngleBin;
133
134 G4PhysicsFreeVector* vectorT = new G4PhysicsFreeVector(fAngleBin);
135
136 sum = 0.;
137
138 for( jTransfer = 0; jTransfer < fAngleBin; jTransfer++)
139 {
140 t1 = dt*jTransfer;
141 t2 = t1 + dt;
142
143 result = integral.Legendre96( this, &G4NeutronElectronElModel::XscIntegrand, t1, t2 );
144
145 sum += result;
146 // G4cout<<sum<<", ";
147 vectorT->PutValue(jTransfer, t1, sum);
148 }
149 // G4cout<<G4endl;
150 fAngleTable->insertAt(iTkin,vectorT);
151 }
152 return;
153}
154
155//////////////////////////////////////////////////////
156//
157// sample recoil electron energy in lab frame
158
160{
161 G4double result = 0., position;
162 G4int iTkin, iTransfer;
163
164 for( iTkin = 0; iTkin < fEnergyBin; iTkin++)
165 {
166 if( Tkin < fEnergyVector->Energy(iTkin) ) break;
167 }
168 if ( iTkin >= fEnergyBin ) iTkin = fEnergyBin-1; // Tkin is more then theMaxEnergy
169 if ( iTkin < 0 ) iTkin = 0; // against negative index, Tkin < theMinEnergy
170
171 position = (*(*fAngleTable)(iTkin))(fAngleBin-1)*G4UniformRand();
172
173 // G4cout<<"position = "<<position<<G4endl;
174
175 for( iTransfer = 0; iTransfer < fAngleBin; iTransfer++)
176 {
177 if( position <= (*(*fAngleTable)(iTkin))(iTransfer) ) break;
178 }
179 if (iTransfer >= fAngleBin-1) iTransfer = fAngleBin-1;
180
181 // G4cout<<"iTransfer = "<<iTransfer<<G4endl;
182
183 result = GetTransfer(iTkin, iTransfer, position);
184
185 // G4cout<<"t = "<<t<<G4endl;
186
187
188 return result;
189}
190
191/////////////////////////////////////////////////
192
195{
196 G4double x1, x2, y1, y2, randTransfer, delta, mean, epsilon = 1.e-6;
197
198 if( iTransfer == 0 || iTransfer == fAngleBin-1 )
199 {
200 randTransfer = (*fAngleTable)(iTkin)->Energy(iTransfer);
201 }
202 else
203 {
204 if ( iTransfer >= G4int((*fAngleTable)(iTkin)->GetVectorLength()) )
205 {
206 iTransfer = G4int((*fAngleTable)(iTkin)->GetVectorLength() - 1);
207 }
208 y1 = (*(*fAngleTable)(iTkin))(iTransfer-1);
209 y2 = (*(*fAngleTable)(iTkin))(iTransfer);
210
211 x1 = (*fAngleTable)(iTkin)->Energy(iTransfer-1);
212 x2 = (*fAngleTable)(iTkin)->Energy(iTransfer);
213
214 delta = y2 - y1;
215 mean = y2 + y1;
216
217 if ( x1 == x2 ) randTransfer = x2;
218 else
219 {
220 if ( delta < epsilon*mean )
221 {
222 randTransfer = x1 + ( x2 - x1 )*G4UniformRand();
223 }
224 else
225 {
226 randTransfer = x1 + ( position - y1 )*( x2 - x1 )/delta; // ( y2 - y1 );
227 }
228 }
229 }
230 return randTransfer;
231}
232
233//////////////////////////////////////////////////////////////
234//
235// Rosenbluth relation (ultra-relativistic!) in the neutron rest frame,
236// x = sin^2(theta/2), theta is the electron scattering angle
237// Magnetic form factor in the dipole approximation.
238
240{
241 G4double result = 1., q2, znq2, znf, znf2, znf4;
242
243 znq2 = 1. + 2.*fee*x/fM;
244
245 q2 = 4.*fee2*x/znq2;
246
247 znf = 1 + q2/fMv2;
248 znf2 = znf*znf;
249 znf4 = znf2*znf2;
250
251 result /= ( x + fAm )*znq2*znq2*znf4;
252
253 result *= ( 1 - x )/( 1 + q2/4./fM2 ) + 2.*x;
254
255 return result;
256}
257
258////////////////////////////////////////////////
259//
260//
261
263 const G4HadProjectile& aTrack, G4Nucleus&)
264{
266
267 const G4HadProjectile* aParticle = &aTrack;
268 G4double Tkin = aParticle->GetKineticEnergy();
269 fAm = CalculateAm( Tkin);
270 // G4double En = aParticle->GetTotalEnergy();
271
272 if( Tkin <= LowestEnergyLimit() )
273 {
276 return &theParticleChange;
277 }
278 // sample e-scattering angle and make final state in lab frame
279
280 G4double sin2ht = SampleSin2HalfTheta( Tkin); // in n-rrest frame
281
282 // G4cout<<"sin2ht = "<<sin2ht<<G4endl;
283
284 G4double eTkin = fee; // fM;
285
286 eTkin /= 1.+2.*fee*sin2ht/fM; // fme/En + 2*sin2ht;
287
288 eTkin -= fme;
289
290 // G4cout<<"eTkin = "<<eTkin<<G4endl;
291
292 if( eTkin > fCutEnergy )
293 {
294 G4double ePlab = sqrt( eTkin*(eTkin + 2.*fme) );
295
296 // G4cout<<"ePlab = "<<ePlab<<G4endl;
297
298 G4double cost = 1. - 2*sin2ht;
299
300 if( cost > 1. ) cost = 1.;
301 if( cost < -1. ) cost = -1.;
302
303 G4double sint = std::sqrt( (1.0 - cost)*(1.0 + cost) );
304 G4double phi = G4UniformRand()*CLHEP::twopi;
305
306 G4ThreeVector eP( sint*std::cos(phi), sint*std::sin(phi), cost );
307 eP *= ePlab;
308 G4LorentzVector lvt2( eP, eTkin + electron_mass_c2 ); // recoil e- in n-rest frame
309
310 G4LorentzVector lvp1 = aParticle->Get4Momentum();
311 G4LorentzVector lvt1(0.,0.,0.,electron_mass_c2);
312 G4LorentzVector lvsum = lvp1+lvt1;
313
314 G4ThreeVector bst = lvp1.boostVector();
315 lvt2.boost(bst);
316
317 // G4cout<<"lvt2 = "<<lvt2<<G4endl;
318
319 G4DynamicParticle * aSec = new G4DynamicParticle( theElectron, lvt2 );
321
322 G4LorentzVector lvp2 = lvsum-lvt2;
323
324 // G4cout<<"lvp2 = "<<lvp2<<G4endl;
325
326 G4double Tkin2 = lvp2.e()-aParticle->GetDefinition()->GetPDGMass();
329 }
330 else if( eTkin > 0.0 )
331 {
333 Tkin -= eTkin;
334
335 if( Tkin > 0. )
336 {
339 }
340 }
341 else
342 {
345 }
346 return &theParticleChange;
347}
348
349//
350//
351///////////////////////////
G4double epsilon(G4double density, G4double temperature)
double G4double
Definition: G4Types.hh:83
bool G4bool
Definition: G4Types.hh:86
int G4int
Definition: G4Types.hh:85
#define G4UniformRand()
Definition: Randomize.hh:52
Hep3Vector unit() const
Hep3Vector boostVector() const
HepLorentzVector & boost(double, double, double)
Hep3Vector vect() const
static G4Electron * Electron()
Definition: G4Electron.cc:93
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void SetEnergyChange(G4double anEnergy)
void SetMomentumChange(const G4ThreeVector &aV)
void SetLocalEnergyDeposit(G4double aE)
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
const G4LorentzVector & Get4Momentum() const
G4double GetTotalEnergy() const
G4double LowestEnergyLimit() const
void SetLowestEnergyLimit(G4double value)
void SetMinEnergy(G4double anEnergy)
void SetMaxEnergy(const G4double anEnergy)
virtual void ModelDescription(std::ostream &) const
G4double SampleSin2HalfTheta(G4double Tkin)
G4double CalculateAm(G4double momentum)
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4NeutronElectronElModel(const G4String &name="n-e-elastic")
virtual G4bool IsApplicable(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4double GetTransfer(G4int iTkin, G4int iTransfer, G4double position)
const G4String & GetParticleName() const
void PutValue(const std::size_t index, const G4double e, const G4double value)
static G4int GetModelID(const G4int modelIndex)
void clearAndDestroy()
G4double GetLowEdgeEnergy(const std::size_t index) const
Definition: DoubConv.h:17